
Optical content-addressable parallel processor:
architecture, algorithms, and design concepts

Ahmed Louri

Associative processing based on content-addressable memories has been argued to be the natural solution
for nonnumerical information processing applications. Unfortunately, the implementation requirements
of these architectures when one uses conventional electronic technology have been cost prohibitive;
therefore associative processors have not been realized. Instead, software methods that emulate the
behavior of associative processing have been promoted and mapped onto conventional location-
addressable systems. However, this does not bring about the natural parallelism of associative processing,
namely, the ability to access many data words simultaneously. Optics has the advantage over electronics
of directly supporting associative processing by providing economic and efficient interconnects, massive
parallelism, and high-speed processing. The principles of designing an optical content-addressable parallel
processor (OCAPP) for the efficient support of parallel symbolic computing are presented. The
architecture is designed to exploit optics advantages fully in interconnects and high-speed operations.
Several parallel search-and-retrieval algorithms are mapped onto an OCAPP to illustrate its capability of
supporting parallel symbolic computing. A theoretical performance analysis of these algorithms is
presented. This analysis reveals that the execution times of the parallel algorithms presented are
independent of the problem size, which makes the OCAPP suitable for applications in which the number
of data sets to be operated on is high (e.g., massive parallel processing). A preliminary optical
implementation of the architecture with currently available optical components is also presented.

I. Introduction
The information explosion seen in recent years in all
fields of human endeavor has stimulated the develop-
ment of computer-based information systems to as-
sist in the creation, storage, modification, classifica-
tion, and retrieval of mainly textual or symbolic data.
For example, progress in database management sys-
tems, expert systems, and intelligent knowledge-
based systems is increasing demand for symbolic
information processing such as text editing, file pro-
cessing, table sorting, searching, and retrieval, which
have no numerical meaning. In fact, a substantial
proportion of the work load of modern information
processing systems involves searching and sorting
symbolic data.1 2 Nevertheless, a majority of comput-
ers are designed mainly for numerical computations,

The author is with the Department of Electrical and Computer
Engineering, University of Arizona, Tucson, Arizona 85721.

Received 16 November 1990.
0003-6935/92/173241-18$05.00/0.
o 1992 Optical Society of America.

and they suffer from a fundamental handicap that
stems from the principle of addressing the memory.
The notion of locating information by its address is
fundamentally a weak design concept for symbolic
data processing.

When a search for a value is made through a
location-addressable memory, the entire memory may
need to be searched one word at a time (if the data are
not sorted in memory), which consumes a great deal
of time. There is no logical reason why the search
must be done sequentially. The only reason stems
from the fundamental handicap of separating process-
ing and memory and addressing memory one word at
a time. This fundamental flaw has forced system
analysts and programmers to develop sophisticated
software techniques for symbolic information process-
ing such as hashing and indexing.34 However, the
implementation of such software techniques on loca-
tion-addressed computers has lead to complex, expen-
sive, and inefficient information processing sys-
tems.5 3

Searching, retrieving, sorting, and modifying sym-
bolic data can be significantly improved by the use of

10 June 1992 / Vol. 31, No. 17 / APPLIED OPTICS 3241

content-addressable memory instead of location ad-
dressability.3,6 In such a method, the absolute loca-
tion of each data object has no logical significance; all
access to data objects is by content. As an illustration,
consider a professor trying to find out how many
students in his class are familiar with the optical
computing subject. If he considers the students to be
a coordinate-addressed memory, he asks the ques-
tions: Does the student in row one, column one know
the subject? Does the student in row one, column two
know the subject? He does this one at a time until he
exhausts all the seats in the classroom. If the profes-
sor assumes a content-addressable memory, he stands
before the class and says: If you have prior knowl-
edge of optical computing, please raise your hand. He
then gets multiple responses (if any) at the same
time. In concept, such associative processing is a
naturally parallel form of symbolic representation
and manipulation of abstract data structures, and has
potential benefits in simplicity of expression (program-
ming), storage capacity, and speed of execution.3 78

There are two hypotheses underlying this paper:

(1) Associative processing provides a sound basis
to uncover inherent parallelism in symbolic process-
ing and information retrieval systems.

(2) Optics is potentially the ideal medium to
exploit such parallelism by providing efficient imple-
mentation support for the associative processing
model.

The rest of the paper is organized as follows.
Section II briefly reviews associative processing. This
includes a basic architecture, benefits, and difficulties
faced by electronics for implementing this computing
model. Section III presents the design concepts and
structural organization of an optical content-address-
able parallel processor (OCAPP). Section IV describes
a variety of parallel algorithms for searching and
information retrieval that can be efficiently imple-
mented on an OCAPP, and in Section V we consider
the optical implementation of the different compo-
nents of an OCAPP. Here, only a general description
of the implementation issues will be considered.
Section VI presents an estimated performance analy-
sis, and Section VII concludes the paper.

11 Associative Processing

A. Background
In an associative memory, information is addressed
by its contents.3 An associative processor is a parallel
processing machine in which the data items are
content addressable, and it has the added capability of
writing in parallel into words satisfying certain crite-
ria. It may be that the entire contents of stored words
may be changed, or just a few bits of the words. A
basic associative architecture that can provide a
parallel search and update is depicted in Fig. 1.3 It
consists of n words of associative memory, word select

K OUTPUT REGISTER

Fig. 1. Basic architecture of an associative memory processor.

logic, bit-slice select logic, a control memory for
storing programs and control, response register, mul-
tiple match resolver, an output register, and some
auxiliary circuits for control. The data memory con-
sists of n words with m bits per word. Each bit cell in
the memory contains storage and comparison logic to
determine whether it matches an interrogating signal
broadcast by the bit-slice select logic, and also for
parallel read and white. In the bit-slice select logic,
the comparand register C is used to hold the key
operand that is being searched for. The mask register
M is used to enable or disable the bit slices involved in
the parallel comparison operations across all the
words of the memory array. The response register R
is used to indicate if there are matching words. The
multiple response resolver is used to select one (it
may be the first) of the matching words. Parallel
comparisons are performed on all memory words.

This memory organization leads to a computational
model with the following advantages over conven-
tional location-addressable models9 10:

* Information is processed within the associative
memory, without transfer to an independent process-
ing unit. Since there is no addressing of data and no
data movement, this implies the elimination of the
fundamental von Neumann bottleneck encountered
in conventional systems.

* The amount of time required for searching,
retrieving, and updating information is independent
of the memory and the problem sizes (e.g., the
number of words involved).

* There is no restriction on the length of words
that can be stored in the memory. This implies a
computational environment with a variable word
length, as opposed to conventional systems in which
the word length is fixed at design time.

3242 APPLIED OPTICS / Vol. 31, No. 17 / 10 June 1992

* Because of the modular and uniform nature of
the associative memory model, an associative proces-
sor can be easily expanded by adding identical cells
and by adjusting the control registers accordingly
without any effect on the software and the control
design. This implies great potential for scalability and
expandability.

B. Problems with Electronic Content-Addressable
Memories
Despite the above advantages of associative process-
ing, this model of computing is not extensively used
because of the difficulty and high cost of implement-
ing it in conventional electronic technology.5 3 In-
stead, software methods such as hashing and index-
ing that emulate a content-addressable capability
have been used. The major problems with current
electronic content-addressable memories (CAM's) are
the following:

(1) Each bit cell in an associative memory is much
more complex and requires more circuitry than does a
conventional cell. Even with the advent of very-large-
scale integration technology, the single cell complex-
ity still does not allow for the use of large associative
memories.

(2) The memory storage provides poor storage
density compared with conventional memory.

(3) The third major difficulty is the complexity of
the interconnects. Recall that in order for all cells to
compare their values to that of the comparand regis-
ter, the control unit must broadcast the value to all
cells involved in the comparison. However, using
conventional technology, we see that the time delays
associated with the broadcasting function are appre-
ciable. Moreover, intercell interconnects become cum-
bersome for a large array size.

(4) The fourth difficulty is the lack of an efficient
means of implementing parallel access to the cells,
namely, parallel input and output.

Ill. Optical Content-Addressable Parallel Processor
Optical systems hold the promise of providing effi-
cient support for future parallel processing systems.
Optics advantages have been cited on numerous
occasions. 11-'8 These include inherent parallelism,
high spatial and temporal bandwidths, and noninter-
fering communications. For associative processing,
optics may be the ideal solution for the fundamental
problems faced in electronic implementations; namely,
cell complexity, interconnect latency, difficulty of
implementing information broadcasting, and parallel
access to the stored data.

A. Roles of Optics in Content-Addressable Memory
Design
Optics can provide direct architectural support for
CAM's in the following ways:

(1) Optics can alleviate the cell complexity by

migrating the implementation of wiring and logic into
free space.

(2) The high degree of connectivity available in
free-space space-invariant optical systems, and the
ease with which optical signals can be expanded
(which allows for signal broadcasting) and combined
(which allows for signal funneling) can also be ex-
ploited to solve the interconnect design and alleviate
network latency problems.

(3) Optical and electro-optical systems can offer
considerably more storage capacity (especially second-
ary storage) than pure electronic systems.19-21

(4) Finally, the multidimensional nature of opti-
cal systems can alleviate the input-output problem
by providing parallel access to the stored-processed
data.

Most current research in optical CAM's is related to
neural network models.2223 Neural network models
used as CAM's can produce correct results even when
their inputs are only partially presented. Therefore
they can be used to select the best matches when
partial inputs are provided. However, these models
require not only a radical departure from current
architectures, but also a major change in the program-
mability of computers. This paper concentrates on
the use of optical CAM's for traditional search (exact-
match) and information retrieval applications that
are encountered in database-knowledge-base process-
ing, expert systems, and list and string processing.
Our goal is to develop adequate architectural support
for these applications by exploiting the unique advan-
tages of optics without radical changes to current
programming practices. The rationale is that the
resulting architecture should be similar to current
computer systems but expanded in capability, for
there is a significant base of applications that can take
advantage of such an expanded system.

_111111110 2-D array of optical data UNIT
(n x m data bits) L LY OPTICA

iD t t tical data ~~~~~~~ELECTRICAL
-- - 1D vector of opialdt OUTPUT

(n x 1 data bits)

Fig. 2. Schematic organization of the optical content-addressable
parallel processor.

10 June 1992 / Vol. 31, No. 17 / APPLIED OPTICS 3243

B. Optical Content-Addressable Parallel Processor:
Overview

In Fig. 2 a preliminary organizational structure for
an OCAPP is proposed. The architecture is organized
in a modular fashion and consists of a selection unit, a
match-compare unit, a response unit, an output unit,
and a control unit. The architecture is developed to
meet four goals, namely, (1) exploitation of maximum
parallelism, (2) amenability to optical implementa-
tion with existing devices, (3) modular design that can
be scalable to bigger problems (to be explained later),
and (4) capability of efficiently implementing informa-
tion retrieval and symbolic computations. Moreover,
the programming methodology for an OCAPP is
compatible with that of existing single-instruction
multiple data systems.2 4 In what follows, we describe
the role of each unit. Detailed optical implementation
of an OCAPP is presented in Section V.

The selection unit is schematically described in Fig.
3. It consists of (1) a storage array of n words, each m
bits long (in actuality, the storage array capacity is
n x 2m, since each bit position consists of a true bit
wij and its complement 7jj); and (2) word and bit-slice
enable logic to enable-disable the words and-or the
bit-slices that participate in the match operation and
reset the rest. It is assumed that the storage array can
be loaded in parallel and (if need be) read in parallel.
Optical means for achieving this are discussed below.

The match-compare unit shown in Fig. 4 contains
(1) a 1 x m interrogation register I; (2) logic hardware
to perform parallel bitwise comparison between the
bits of the interrogation register and the enabled bits
of the storage array; (3) two n x 1 working registers,
G and L, which are used for magnitude comparisons;
(4) an n x 1 response register R for displaying the
result of the comparison; and (5) a single indicator bit
called the match detector MD, which indicates whether

Fig. 3. Organization of the selection unit.

2-0 OPTICAL
DATA FROM RI
SELECTION 7' COMPARISONUNITLOI

/ . . ~~~~~~~G L:LSS-THAN

R G GREATER-THAN

a t ~R: RESPONSE

MATCH
DETECTOR BIT

Fig. 4. Organization of the match-compare unit.

or not there are any matching words. This unit allows
the comparison of a single operand stored in the
interrogation register with all the words stored in the
storage array. As such, it is considered an SIMD unit.
Bit position Ri of R is set to one when word Wi of the
storage array matches the contents of I. The I register
is a combination of the comparand register C and the
mask register M, as shown in Table 1. As such, it
holds the operand (depending on masking informa-
tion, if any) that is being searched for or is being
compared with. It is assumed that register I is
available in dual-rail logic (both true and complement
bits are available).

The response unit is responsible for selecting the
first matching word when there are several matching
words. It consists of a combinatorial priority circuit
for selecting the first matching word. Depending on
the program control, the output of the response unit
is either routed to the output unit for outputting the
result or fed back to the selection unit for further
processing of the matching words. All units are under
the supervision of a conventional control unit with
conventional storage (e.g., a local random-access mem-
ory), which stores the program instruction. Its role is
to load and unload the storage array, set and reset
various registers such as the I, R G, and L registers of
the match-compare unit, enable and disable memory
words, perform conditional instructions, monitor the
MD bit, and test program termination. In Section IV

Table I. Formulation of Interrogation Register I

Search Bit, Mask Bit, Interrogation Bits,
Cj mi ij,

0 0 01
1 0 10
0 1 00
1 1 ooa

aThe entry Ij j = 00 means that bit positionj for all words does
not participate in the match operation (e.g., bit slicej is disabled).

3244 APPLIED OPTICS / Vol. 31, No. 17 / 10 June 1992

we describe the implementation of several parallel
algorithms on an OCAPP in order to show its imple-
mentation requirements and processing benefits. We
then proceed to describe the optical implementation
of its functional units in Section V.

IV. Parallel Search Algorithms on an Optical
Content-Addressable Parallel Processor
We classify search operations as basic and compound
operations. A basic search operation is one that can be
completed in one sweep over all the bit slices of the
storage array. It does not involve any feedback process-
ing. A compound search operation requires a feed-
back from the response unit to the selection unit. As a
consequence, it takes more than one sweep over the
storage array to complete. For basic search opera-
tions, we group the following operations:

* The equivalence search comprises the equality
search, the not-equal-to search, and the similarity
search (search for a match within a masked field).

* The threshold search comprises the smaller-
than, the not-smaller-than, the greater-than, and the
not-greater-than searches.

* The extremum search comprises the greatest-
value search and the smallest-value search.

Compound search operations can be implemented
in a series of basic search operations. For the com-
pound search, we group the following operations:

* The adjacency search comprises the next-above
search and the next-below search.

* The between-limits search is the search for
words z between two limits X and Y (X < Y) for the
conditionsX < z < Y X < z < YX < z < Y, andX <

< Y.
* The outside-limits search is the search for

words z outside two limits X and Y (X < Y) for the
conditionsX 2 z > Y, X > z 2 Y, X 2 z > Y, andX >

> Y.
* The ordered retrievals (sorting) are the ascend-

ing order retrieval and the descending order retrieval.

Of course, many more compound search operations
can be formulated by using the basic search opera-
tions. The above search operations are the most
frequently used in information retrieval applications.

A. Parallel Algorithms for Basic Search Operations on an
Optical Content-Addressable Parallel Processor

In what follows, we denote a memory word as Wi=
(wilwim-i ... Wim), where wij is the jth bit cell of the
word Wi, wil is the most significant bit, and wim is the
least significant bit. We denote the j th bit slice by
Bj = (wlijw2j... w,,j), which is made up of the jth bit
of every word in the storage array. The interrogation
and response registers are denoted by I = IJ2 ... I m

and R = R 1R 2 ... Rn, respectively. The comparand
word (search argument) and the mask register word
are denoted by C = (c 2 ... cm) and A = (A 1A2 ...
Am), respectively.

1. Equivalence Search
In this type of search, the memory is partitioned
according to the magnitude of the search word C into
two sets, namely, words that are equal to C and words
that are not. The equality and masked search opera-
tions can be implemented by a bitwise match.3 For an
equality match, all the bits of the search word need to
be matched, whereas for the masked search, only a
subset of the bits of the search word is compared with
the respective bits of the memory words. A = 0
means that c; is not masked, while Aj = 1 means that
cj is masked. These two search modes can be com-
bined as shown in Table 1. The comparison operation
can be accomplished by using either the exclusive-OR
(for bit mismatch) or the exclusive-AND (for bit match)
logic functions.3 In the proposed system, we consider
the exclusive-OR function since it can be efficiently
and easily implemented in optics.

Given a search word C (including masking informa-
tion), we see that the exclusive-OR function for a bit
mismatch denoted by bi on the jth cell of the ith
memory word is

bij = (Ij A wj) V (Ij A wij), (1)

where the symbols A, V, and the bar () denote the
logical AND, the logical OR, and the logical NOT,

respectively. Now the inequality of memory word Wi
with interrogation vector I requires at least one bit
mismatch between the two words, and therefore

j=m
Mi = V bij = b V bim-i V ... V bil,

j=1
(2)

where the big V denotes a logical OR over all bits and
Mi indicates a word mismatch. Alternatively, the
equality of words Wi and I is also computed by

Ri = Mi =(IAi) V (IA wil) A,) V(ImA wim).

(3)

Equation (3) indicates that matching words in mem-
ory will be flagged by having their corresponding R bit
set to one, and all mismatches will have their R bits
set to zero. Indicator bit Ri can be computed by using
NOR logic on all the mismatch bits bij forj = 1, . . . , m.
Moreover, Eq. (3) is space invariant and can be
implemented in bit-parallel and word-parallel fashion
because of the inherent parallelism of optics. Conse-
quently, all Ri's for i = 1, . . , n can be computed at
the same time with a single access to the storage
array. Implementation details are described in Sec-
tion V.

10 June 1992 / Vol. 31, No. 17 / APPLIED OPTICS 3245

Equivalence Search Algorithm
(1) Initialize by using the following steps:

(a) Load I (this will depend on the search word
and the masking condition).

(b) Clear R (clear all bits in the R register).
(2) _Compute the match condition with R =

Vj-l bij for i = 1, . . ., n. (Ri = 1 if and only if W
matches I.)

2. Threshold Search
This mode of search partitions the memory according
to the magnitude of the interrogation vector I into
three sets, namely, words equal to, less than, and
greater than I. We introduce here an algorithm that
provides this result by simultaneously using three
registers of the response unit, namely, R, G and L.
We should note that there are other parallel algo-
rithms that can accomplish the same effect.6 Initially,
all memory words are made active by setting registers
RGL = 100 (for all bits). The memory is scanned from
the most significant to the least significant bit posi-
tion by enabling a single bit slice at a time. When the
bit I is one, we select all active memory words with
wi = 0 as "less than" by setting their corresponding
bit position RGL = 001. These words are then
disabled from further comparisons. Similarly, when
I = 0, we select all active memory words with wi = 1
as "greater than" by setting their corresponding bit
position RGL = 010, and then we disable them from
further processing. At the end of the last bit position,
words still in the state RGL = 100 are equal to the
comparand, words in the state RGL = 010 are greater
than the comparand, and words in the state RGL =
001 are less than the comparand. It is important to
note that even though we are scanning the memory
from the most significant bit to the least significant
bit, the search process can be terminated any time
there are no matching words at a given bit position
(R = 0 for all i = 1, . . , n). Such a condition is easily
detectable by checking the MD bit.

Threshold Search Algorithm
(1) Initialize by using the following steps:

(a) Load I (depending on the search word and
masking condition).

(b) Enable memory words.
(c) Set R, clear G clear L, and set j = 1 (the

variable j is used by the control unit to scan the
storage array).

(2) Perform the magnitude search at bit-slice j
(compute R, G, and Li). R = V b, G = ij A w,
Li = I A WJ for i = 1, . . ., n (note that only the
enabled bit slicej determines the values of R, G, and
Li; all other bit slices are disabled at this time, and
therefore have no influence on R, G, and Li).

(3) Test whether MD = 1 (are there any words
that match the I register at the current bit position
j?), and then use the following procedures:

(a) If MD = 1, proceed to step 4.
(b) If MD = 0, proceed to step 6.

(4) Disable memory words whose corresponding

bits in R are zero. Memory words whose correspond-
ing bit Ri = 0 have already been decided on. Words
with Li = 1 are less than I, and words with Gi = 1 are
greater than I. These words can be outputted at this
time if needed.

(5) Incrementj withj '--j + 1, test ifj = m, and
use the following procedures:

(a) Ifj • m, proceed to step 2.
(b) Ifj = m, proceed to step 6.

(6) The search is done and the result is reported
in R, G, and L.

Table II illustrates the threshold search algorithm
for a magnitude search of 7 words, each 5 bits long.

3. Extremum Search
This type of search refers to finding the maximum (or
minimum) of a set of (or all) memory words. We
consider first the search for the maximum.

a. Maximum Search. To find the maximum we
can scan the memory words from the most to the least
significant bit positions. As we scan the bit slices, we
determine if any of the enabled words have a one in
the current bit position. If we find some, we disable all
those words that do not have a one in this position. If
none of the words at the current position possesses a
one, we keep scanning. At any given time, all remain-
ing candidate words are equal as far as we have
examined them, because for every bit position either
every word has a zero in that bit position, or when
some words have ones, we disable the ones with zeros.
Therefore at bit positionj, enabled words with wi = 1
are larger than enabled words with wi = 0. Since we
are seeking the maximum, we disable the ones with
wi = 0. This process is repeated until we exhaust all
bit positions, at which time the maximum word will
be indicated by R = 1.

Finding the Maximum Algorithm
(1) Initialize by using the following steps:

(a) Load I with I 11 ... 11 (I is loaded with
all bits set to one).

(b) Set R, clear MD, and setj = 1.
(c) Enable memory words.

Table II. Example of Threshold Search Algorithms

State of RGL at the
Memory End of Each Iteration
Word,

1 Wi 1 2 3 4 5 (Last Iteration)

1 10111 100 100 100 100 010 (W > S)
2 11000 100 010 010 010 010 (W2 > S)
3 10010 100 100 001 001 001 (W < S)
4 10110 100 100 100 100 100 (W4 = S)
5 10101 100 100 100 001 001 (Ws < S)
6 01101 001 001 001 001 001 (W6 < S)
7 11101 100 010 010 010 010 (W7 > S)

aSearch word S, 10110; mask word, 00000; I register, 10110
(effective word search).

3246 APPLIED OPTICS / Vol. 31, No. 17 / 10 June 1992

(2) Perform an equivalence search at bit slice j
(compute Ri for all i = 1, . . , n).

(3) Test whether MD = 1 (are there any words
with a one in the current bit positionj?), then use the
following procedures:

(a) If MD = 1, proceed to step 4.
(b) If MD = 0, proceed to step 6.

(4) Disable all words that do not have a one in the
current bit position (these words are indicated by
Ri = 0).

(5) Clear R and MD.
(6) Incrementj withj -j + 1, test ifj = m, and

choose one of the following:
(a) Ifj • m, go to step 2.
(b) If j = m, the output maximum value is

indicated by Ri = 1.

Table III illustrates the maximum search algo-
rithm.

b. Minimum Search. The search for the mini-
mum is very similar to the search for the maximum
except that the I register is initially loaded with zeros,
and if any enabled word has a zero in the current bit
position (there exists a memory word Wi such that its
corresponding Ri = 1), we disable the words with a
one in the current bit position (Ri = 0). These words
have to be greater than the minimum sought. The
process is repeated until we exhaust all bits of the
enabled words. The minimum value will also be
indicated by a one in register R.

B. Parallel Algorithms for Compound Search Operations
on the Optical Content-Addressable Parallel Processor

Compound search operations such as the ones stated
in Subsection IV.A. cannot be economically imple-
mented by a single sweep over the memory words. We
therefore choose to implement such operations as a
series of basic searches. The rationale is to keep the
architecture as simple as possible, and therefore
make it highly amenable to optical implementation.
Of course, speed improvements can be gained by
implementing these search operations as a basic
search, but the number of logic circuits may be
extensive.

Table Ill. Example of Maximum Search Algorithm

State of Register R at the
End of Each Iteration

Memory Word, i 1 2 3 4 5 (Last Iteration)

11000 1 1 0 0 0

11100 1 1 1 0 0

10001 1 0 0 0 0

11110 1 1 1 1 1 (Maximum)
11001 1 1 0 0 0

1. Double-Limit Search (Between and Outside
Limits)
Given two numbers called HIGH and LOW, we see that
the double-limit search consists of finding those
words that are between these limits and-or words
that are outside these limits. This gives rise to eight
different searches that can be accomplished in a very
similar manner. Let us consider the between-limit
search. Given the two numbers HIGH and LOW, we
wish to find those words that are greater than LOW

but less than HIGH, namely, all Wi such that LOW <

Wi < HIGH. We can accomplish this search by using
the threshold search described previously, as follows.
First, we determine the words that are less than the
comparand HIGH. These words will be indicated by a
one in the L register. We then disable all other words
except the ones that are less than HIGH, and perform
another threshold search by using the comparand
LOW. After the second search, words that are less than
HIGH and greater than LOW will be marked with a one
in the G register, which could be routed to the output
unit for outputting the search result. The algorithm
follows.

Between-Limits Search Algorithm.
(1) Initialize by using the following steps:

(a) Load I with comparand HIGH.

(b) Enable all memory words (initially all mem-
ory words participate in the search).

(c) Set R, clear G, clear L, and set j = 1.
(2) Perform the threshold search.
(3) Disable memory words with Li = 0. Words

with Li = 0 are either greater than or equal to
comparand HIGH and therefore need to be disabled at
this time.

(4) Load I with comparand LOW.

(5) Perform the threshold search (at the end of
this step, all words that are greater than LOW and less
than HIGH will be marked with a one in the G
register).

(6) Route the G register to the output unit (bit
Gi = 1 of register G indicates that the memory word
Wi satisfies LOW < Wi < HIGH).

2. Adjacency Search
To find the word that is next above the comparand
(the smallest word larger than the comparand), we
search for all words that are larger than the com-
parand and then select the minimum. Similarly, to
find the word that is next below the comparand (the
largest word smaller than the comparand), we search
for all words less than the comparand and select the
maximum.

Next-Above Search Algorithm
(1) Initialize by using the following steps:

(a) Load I with a search word.
(b) Enable memory words.
(c) Set R, clear G, clear L, and setj = 1.

(2) Perform the threshold search (get all words
greater than the comparand).

(3) Disable those words that are less than the

10 June 1992 / Vol. 31, No. 17 / APPLIED OPTICS 3247

comparand (these words will be indicated by a zero in
the G register).

(4) Perform a minimum search on all enabled
words. The word next above the comparand is indi-
cated by a one in the R register.

The search for the largest word smaller than the
comparand (next-below search) can be carried out by
an algorithm similar to the one above. In this case,
step 2 of the next-above algorithm is replaced by a
search for words that are less than the comparand,
and step 4 is replaced by a maximum search.

3. Ordered Retrieval (Sorting)
Sorting a set of data using an OCAPP is straightfor-
ward. This can be achieved by performing the extre-
mum search repeatedly until all the data are re-
trieved. For the ascending order retrieval we enable
the memory words to be sorted and determine the
minimum (by using the minimum search operation).
We output the obtained minimum value and disable it
from the storage array. We repeat these steps until we
retrieve (in ascending order) all the enabled words.
For descending order retrieval we select the maxi-
mum value at each step.

Ascending-Descending Order Retrieval Algorithm.
(1) Enable the set of words to be ordered.
(2) Perform a minimum-maximum search (deter-

mine the smallest or the largest word for descending
order retrieval).

(3) Route R to the output unit (output the mini-
mum-maximum word).

(4) Disable the selected minimum-maximum
word.

(5) Repeat steps 2-4 until all enabled words are
exhausted.

V. Optical Implementation
In Section V we identify the fundamental and basic
operations required to implement the optical architec-
ture and describe possible optical components for
achieving them.

A. Basic Operations and Hardware Components Required
An analysis of the conceptual OCAPP and of the
algorithms that have been described in Sections III
and IV, respectively, reveals that the following is
required:

(1) Data bits are in optical form and must be
available in dual-rail format (both the value and its
complement are required).

(2) Parallel access is required for writing into
and reading from the storage array and the various
control registers such as the interrogation register
and the response register. This also includes selective
writing into and selective reading from the memory of
a single word or several words.

(3) Disablement of a memory word (or several
memory words) whose corresponding bit in the re-

sponse register (or the G register or the L register) is
not asserted.

(4) Disablement of a memory word whose corre-
sponding bit in the priority register P is asserted.

(5) Test the match detector bit MD.
(6) Optical array logic functions.
(7) Space-invariant optical interconnects.
(8) Optical broadcasting and funneling.
(9) Optical feedback connections.

(10) Dynamic routing of information (e.g., rout-
ing contents of register R to a selection unit, an
output unit, or a response unit, depending on the
algorithm).

The optical components required to accomplish the
above operations can be divided into logic elements,
storage elements, and information transfer elements
(or interconnects).

For optical logic and storage, many approaches are
being investigated. One approach is the adaptation of
the spatial light modulator (SLM) technology to
optical logic.25-27 Another approach for realizing opti-
cal components capable of performing logic is to
optimize the device from the beginning for digital
operations. The recent emergence of the quantum-
well self-electro-optic effect device (SEED) and its
derivative, the symmetric or S-SEED, are such prod-
ucts. 28,29 The SEED devices can be used to realize
logic operations such as NOR, OR, AND, and NAND, and
they can be used for storage such as set-reset (S-R)
latches.30 Optical resonators are another family un-
der this approach that are intended for optical
logic. 31 32 Recently, a promising new device called the
surface-emitting laser logic (CELL) device has been
introduced both as an optical logic and as a latching
device.33 These devices are claimed to be ideal for
applications that require high-optical gain, cascadabil-
ity, and insensitivity to external optical feedback.

All data movements and information transfer in an
OCAPP are space invariant, which may render their
implementation easier. Classical optical components
such as lenses, mirrors, beam splitters, holographic
deflectors, and delay elements are most likely to be
used for this purpose.34 In addition, half-wave plates,
shutters, and masks may be used for dynamic rout-
ing.35-38

B. Modular Implementation of an Optical
Content-Addressable Parallel Processor
In this paper we present a modest design example of
an OCAPP, and we use existing optical hardware in
order to highlight the potential implementation is-
sues of a practicable realization. The implementation
of this first version will make use both of the SEED
device for optical logic operating as a NOR gate, and of
the S-SEED device operating as a S-R latch for
storage.30 The NOR gate is preferable to any other
form of thresholding because it requires only discern-
ment between the state in which no light comes in
and the state in which light comes in. Thus a NOR gate

3248 APPLIED OPTICS / Vol. 31, No. 17 / 10 June 1992

requires a signal-to-noise ratio better than one only.
The family of SEED devices seems to be easy to use,
and the devices are capable of high speed, low-energy
operation, and realization in a two-dimensional for-
mat. 39 Space-invariant optical interconnects, dy-
namic masking components, and beam spreading and
combining components are assumed for data routing.

A schematic diagram of the S-SEED device operat-
ing as an S-R latch is shown in Fig. 5(a). The state of
the device is set by a pair of unequal signal beams
labeled S (used for setting the output Q = 1, Q = 0)
and R (used for resetting the output Q = 0, Q = 1).
The device is set (Q = 1) when the power incident on
the S input is much higher than the power incident on
the R input. The state of the device is read by applying
two equal-power (clock-signal) beams to both inputs.
During the setting of the device, the clock beams
must be low in comparison to the signal beams. The
device holds its state when no clock signal is incident.
Thus the device can operate as a latch. Moreover,
during the application of the clock signal (the reading
process), the state of the device is unaltered as shown
in Fig. 5(b).

As described earlier, the optical processor can be
constructed from several units: the selection unit,
the match-compare unit, the response unit, the
output unit, and the control unit. In Subsections
V.C-V.G we describe the optical implementation (ar-
chitectural rather than experimental setup) of each of
these units. Moreover, the details in the routing and
imaging paths, such as lenses, holographic elements,
masks, beam splitters, and polarizers, as well as
power supplies, presetting, and beam generation for

Va

S r MOW
MODULATOR

CLOCK

MOW

R MODULATOR

ELECTRICAL POWER
OPTICAL SIGNAL (a)

CLOCK

S(SET)

R(RESET)

0

0

the SEED, have been omitted from the diagrams to
assist the reader's conceptual understanding of these
configurations. The details of the actual use of SEED
devices as optical logic elements can be found in Refs.
39-41. For diagrammatic simplifications, the SEED
and S-SEED devices used in the following figures are
assumed to be transparent rather then reflective.

C. Optical Selection Unit
The optical selection unit of Fig. 6 is composed of a
storage array, which consists of a two-dimensional
n x (m + 1)-bit array of clocked S-SEED devices
(each entry in the array at position i, j has two
incoming bits S, R and two outgoing bits wij, Wij); a
clocked n x 1-word register A, which serves to write
data words into the storage array; and a clocked 1 x
m-word register B for writing a single bit slice into the
storage array. The first column of the storage array is
reserved for an n X 1-bit enable register ER, whose
bit ERi = 1 if and only if memory word Wi is enabled
(more on enabling and disabling memory words will
follow). The storage array can be directly loaded with
input data in two-dimensional optical form from an
external optical memory storage such as a page-
oriented holographic memory,20 or from a regular
electronic memory if electrically addressed SLM's
(E-SLM's) are used at the input side of the processor.

1. Writing a Word-Bit Slice Into the Storage Array
The storage array is assumed to be loaded in parallel
at the beginning of the program. During program
execution, the contents of the storage array can be
altered by the use of the A and the B registers. The
latter can be implemented by using E-SLM's such as
the magneto-optic modulators (SIGHTMOD42) or the
CCD-based liquid-crystal valves.

To write a word in the storage array, say at word
position i, we first write the word in E-SLM B. In the
next clock cycle, the contents of the B register are
spread out vertically by using vertical spreading
optics such that each bit By impinges on the set ports
of the jth column of the storage array. Next, bit Ai of
E-SLM A (corresponding to word position i) is pulsed
high and spread out horizontally such that it im-
pinges on the set and reset ports of the ith row of the
storage array. A one bit is written in bit position wij of
the storage array if and only if a high Ai and a high Bj
coincide at the set port of bit wij. Similarly, a zero bit
is written in bit position wij if and only if a high Ai and
a high B1 coincide at the reset port of wij. This of
course assumes that the set-reset thresholds of the
S-SEED devices are so designed. Similar operations
take place for writing a bit slice in the jth column of
the storage array, with the exception of interchanging
the roles of the B and A registers.

* TIME

(b)

Fig. 5. S-SEED device operating as a clocked S-R latch: (a)
schematic diagram, (b) timing diagram. MQW, multiple quantum
well.

2. Enabling-Disabling Memory Words
By enabling a memory word Wi is meant including it
in the matching process. Similarly, by disabling it is
meant the excluding of it from further matching

10 June 1992 / Vol. 31, No. 17 / APPLIED OPTICS 3249

I .: t

__FLL _-
iiFLI

: i ! iFLF1__. . . .
LFLF_

Input from R,GL registers
of match/compare unit 2-D optical Input data

S-SEED device acting E-SLM B
r-. as a clocked S-R latch Selective bit-slice
ni W'i loading register

Optical Inverter gate

To optical
match/
compare

-il unit

_ _ To optical
output
unit

m+1) I Beam splitter

Halfwave plate
(electrically controlled)

Fig. 6. Optical implementation of the selection unit.

operations. In order to have this capability, the first
column of the storage array is designated as an
enabling-disabling register ER. Bits of the ER regis-
ter can be simultaneously set and reset, respectively,
by using two external signals S-ER for setting all bits
of ER, and by using R-ER for resetting all bits of ER
(bits Bo and Bo can be used for this purpose). Alterna-
tively, selected bits of ER can be set and reset under
program control by using an n x 1 SR register (shown
in the Fig. 6), which can be loaded from the R, G, or L
registers of the match-compare unit. To enable (dis-
able) the entire memory words, the S-ER (R-ER) bit is
set and spread out vertically to all the set (reset) ports
of the ER register. To selectively disable memory
words whose R, G, or L bits are not asserted (R = 0,
G = 0, or L = 0) requires the routing of the appropri-
ate register (R, G, or L) to SR, which inverts its light
intensity and routes it to fall upon the reset ports of
ER. Thus word W of the storage array is disabled
from further processing if light emanating from bit
position SR = 1. For example, to disable memory
words whose R bits are not asserted (R = 0) from
further matching operations, we first route the con-
tents of R to SR, which complements these data and
images the complemented data upon the reset ports
of SR. With a low bit Ri = 0, the ith output ERi of the
ER register is also set low, which in turn disables
memory word W from participating in further com-
parisons. The use of the ER register in match opera-
tions is explained next.

The output of the selection unit can be routed to
the match-compare unit for further processing, or to
the output unit for outputting the result. Such
routing can be achieved by using polarization beam
splitters and electro-optical components that are capa-

ble of exchanging the state of polarization under
electrical control, as, for example, the Pockel's cells.34

D. Optical Match-Compare Unit
This is the most critical unit in an OCAPP since it
performs the match and magnitude comparison
searches between the data stored in interrogation
register I and words of the storage array. These
operations should be implemented as parallel and as
fast as possible. As shown in Fig. 7, the unit contains
SEED arrays for comparison logic and three regis-
ters, namely, the response register R, the greater-
than register G, and the less-than register L. Parallel
comparison takes place between memory words ema-
nating from the storage array and the interrogation
register I, as explained below in Subsection V.D. 1.

1. Optical Implementation of Parallel Match and
Comparison Operations
A match at bit wij is detected by an exclusive-OR
principle as indicated by Eq. (1), and a word match is
computed according to Eq. (3), which is rewritten
here by using only the NOR function, as

(4)

and the relative magnitude comparison between the
interrogation word and stored data is given by

Gi = j A wij (word Wi > I),

Li = Ij A awj (word Wi < I).

(5)

(6)

Note that the magnitude comparison is performed bit
serially; therefore bits Li and G require a single bit

3250 APPLIED OPTICS / Vol. 31, No. 17 / 10 June 1992

.. I == -Ri = I, v =W- --ii v T, v wil, . V Wi. V I. V wi.,

1-D optical
NOR gates

I

2-D optical N
data from optical I register
selection unit

Ri= V ER V ,V ER V I V i1 V match '
detector bit

Gi= i I iV Wu

Fig. 7. Optical implementation of match-compare unit.

comparison. In the best case (when there are no
matching words) it takes a single bit comparison (the
most-significant bit position) to determine the values
of Li and Gi. In the worst case, Eqs. (5) and (6) are
computed m times.

In order to have the capability of selectively dis-
abling memory words from further matching, we
need to incorporate the contents of the enabling
register ER in the match condition described above.
One way of including ER in Eq. (4) would be

Ri = MV ERj foralli = 1. n. (7)

Whenever ERi is zero, Ri is zero, and therefore word
Wi is disabled. The optical implementation of Eq. (7)
would require that each bit ERi of register ER be split
into two light beams and that both be directed to a
single NOR gate of the two-input NOR-gate array of the
match-compare unit. While this is feasible, it would

the storage array are simply imaged upon the two-
dimensional NOR-gate array.

In order to keep the interconnections space invari-
ant and to be able to selectively disable memory words
from matching the interrogation register, we formu-
late the match condition as follows:

Ri = M V (Io A ERi V Io A ERj) for all i = 1, . n. (8)

The optical implementation of the above equation
does not require any special interconnection patterns
between the selection unit and the match-compare
unit because the ER register is treated as any other
column of the storage array. Therefore any imaging
system would route the data, including ER, to the
match-compare unit. However, the interrogation reg-
ister needs to be (m + 1)-bits long. The extra bit Io is
set to one during a match-compare operation. Eq. (8)
can also be expressed in terms of the NOR function
only as follows:

Ri =IoVERVIoVERiVIVWiWVIiVwil V I.VWImVim.

require space-variant interconnections between the
optical selection unit and the optical match-compare
unit since the rest of the data (e.g., memory words) in

It can easily be verified that when ERi = 0, the above
equation yields Ri = 0, and when ERi = 1 bit, Ri
depends on the magnitudes of the search word I and

10 June 1992 / Vol. 31, No. 17 / APPLIED OPTICS 3251

(9)

|

the memory word Wi. Optical hardware to implement
the above equation is shown in Fig. 7. In order to
implement parallel comparison, the bits of register I
need to be spread out vertically so that each bit I ()
impinges on one port of the NOR gates of the jth
column of the two-dimensional NOR-gate array, while
data bits wi-j (wv,) for i = 1, . . ., n impinge on the
second ports of the same NOR gates of the two-
dimensional NOR-gate array. The output of the two-
dimensional optical NOR-gate array is replicated into
three copies. Cylindrical lens CL1 positioned in the
path of the first copy collects the output of an entire
row i into a single position i of a second one-
dimensional NOR-gate array that represents register
R. The second copy is passed through a fixed mask M1
whose purpose is to block part of the information that
is contained in the replicated copy, namely, the term
Ij V wij, and let pass the term Ij V w for all i =
1, . . , n andj = 0, . ., m. The unmasled output is
collected by cylindrical lens CL 2 into a single one-
dimensional optical NOR-array, which constitutes reg-
ister G. Similarly, the third copy is passed through a
fixed mask M3, which blocks the terms I V w and
lets through the terms I V wiJ. The unmasked data
are collected into a single one-dimensional optical
NOR-gate array by cylindrical lens CL 3 to form the L
register.

A single level of light intensity on the input side of
bit position Ri will indicate that the word Wi of the
storage array and search word I differ in at least one
bit. Inversely, if zero light impinges on position i of
the one-dimensional NOR-gate array implementing
the R register, this will indicate that the two words
are equal. Similarly, a single level of light intensity on
the input side of registers G and L will set the
appropriate bit. Although it appears that bits Li and
Gi of registers L and G in Fig. 7 depend on all the bits
in row i (after appropriate masking) of the output of

the two-dimensional NOR-gate array, in actuality that
is not the case. Recall that registers L and G are used
only in bit-serial algorithms in which a single bit slice
of the storage array is enabled at a time. Therefore
only a single bit in row i of the storage array
determines the values of bits Li or Gi (see Section III
for details).

Finally, all the bits of register R are logically OR'ed
into a single photodetector cell to form the match
detector MD bit. The MD flip-flop is a quick indication
of whether or not there are any matches between the
contents of register I and memory words. The output
of the match-compare unit (e.g., the contents of the
R, G, and L registers) can be routed to the response
unit for selecting the first matching word, or to the
output unit for outputting the relevant data, or fed
back to the selection unit for disabling irrelevant
words in bit-serial processing. Such routing is accom-
plished by beam splitters, imaging optics, space-
invariant optical interconnects, and control signals
emanating from the control unit.

2. Two-Dimensional Optical Matching
The optical match-compare unit of Fig. 7 consists of a
single interrogation register I, and therefore allows
comparison of one search argument with the words
stored in the storage array. However, because of the
multidimensionality of optical systems, this unit can
be extended to perform multiple search operations in
a single step. That is, several search arguments are
compared simultaneously with the words of the stor-
age array. An extended multiple-interrogation match
detector match-compare unit would have a k x m
two-dimensional array of k search arguments, a
two-dimensional storage array of n words each m bits
long, and an m x k two-dimensional response array
as shown in Fig. 8. Each response register R,
(1 =1,..., k) would indicate the match between

Ik i AM storage array n x k response array
k x n Interrogation array

Fig. 8. Optical implementation of a multiple match-compare unit. The interrogation and the response registers of Fig. 7 are replaced by
two-dimensional arrays of search arguments and response registers, respectively. Register R, indicates the match or mismatch of memory
words with interrogation register I (for i = 1, . . .,).

3252 APPLIED OPTICS / Vol. 31, No. 17 / 10 June 1992

interrogation register I (= 1, . . , k) and the words
of the storage array. The two-dimensional match
operation can be thought of as an optical binary
matrix-matrix multiplication that can be imple-
mented by using several optical techniques.4 3-45

E. Optical Output Unit
The output unit outputs memory words whose corre-
sponding bits in the R, G, L, or P registers are
asserted. This unit should have the capability to
output a single memory word or several words at a
time. For a single word output, the output word is
obtained by a multiplexing operation,

j = P1 A W11 V P2 A 2j V V Pn A forj=1. m.

(10)

The above equation can be expressed in terms of the
NOR function as follows:

N

Data from
register P
of response
unit

Oj= Pi v Wy v P+i V Wj+ V --- V P V W..

(11)

Similarly,

O = 1 V W1 j V 2 V W2j V .V n V W . (12)

Figure 9(a) depicts the optical implementation of Eqs.
(11) and (12). The priority register is inverted with an
n x 1 SEED inverter array, denoted by N. Each
output bit of register N is expanded in the horizontal
direction and imaged upon one port of a two-input
two-dimensional optical NOR-gate array. The contents
of the storage array are imaged upon the second port
of the two-dimensional NOR-gate array. The output of
the two-dimensional NOR-gate array is vertically col-
lected by cylindrical lens CL1 to fall upon the one-
dimensional optical NOR-gate array, which represents
the desired selected output word. Parallel readout of
several words can also be accomplished as shown in
Fig. 9(b). The optical two-input AND-gate array re-
flects the superposition of a data page from the
storage array and a data page formed by the horizon-
tally expanded register T, which can be loaded from
registers R, G, or L. The superposed image is directed
by beam splitter BS2 to a two-dimensional detector
array for the parallel readout of desired words. It
should be noted that Fig. 9(b) can also be used to
output a single memory word if row-addressable
two-dimensional photodetectors are used.

F. Optical Response Unit

The response unit contains a combinational priority
circuit, and it contains a priority register P for
indicating the first matching word in memory. The
priority circuit allows only the first responder (the
first memory word Wi whose Ri is one) to pass to the
priority register P.

The priority circuit can be implemented by using
several stages of one-dimensional NOR-gate arrays in
the form of a binary tree with space-invariant inter-

2-D optical data fromr/ l I
optical selection unit array

2-ND-gate array\

Beam aplille/

CL2

Fig. 9. Optical implementation of the output u
word output, (b) parallel readout of multiple words.

RorGorL
register

nit: (a) single

connections between them.4 6 The size of the NOR-gate
arrays is equal to the number of words n stored in the
storage array, while the number of stages is propor-
tional to log 2(n). A good technique for implementing
such a unit would be the logic-interconnect architec-
ture introduced by Murdocca et al.3 6 and Murdocca.47

The contents of the resulting P register are routed to
the output unit for outputting a single word and also
are fed back to the selection unit for enabling and
disabling purposes.

G. Control Unit
The OCAPP is under the control of a memory control
unit, which comprises a local memory for storing

10 June 1992 / Vol. 31, No. 17 / APPLIED OPTICS 3253

-VP5j=Ti-V---ijVr!Z`V--'j'� - " V W j""

0, =P1V�1jVF2V01jV ... V n V ZV71 -

programs and a program sequencer for executing
instructions that control the optical hardware such as
the S-R latches, the NOR-gate arrays, the routing
shutters, and the splitters. The instruction set is
composed of conventional assignment and condi-
tional statements, and it is composed of additional
instructions required to implement associative paral-
lel processing. This includes data movement between
units, comparison operations, memory loading and
unloading, and monitoring of the MD bit. These
additional instructions are few and are derived from
the required fundamental operations described above.
It should be noted that application programs for
OCAPP can be written in conventional high-level
languages such as Pascal or C, with few calls to
external procedures that support parallel associative
processing.

VI. Performance Analysis
An exact performance analysis of the proposed
OCAPP, including speed, cost, and power-budget
breakdown, is currently not feasible. We therefore try
to estimate theoretically the execution time of the
various algorithms presented. For the current analy-
sis, we will not estimate the power required for the
system. The following are definitions of terms and
assumptions used in the time complexity analysis:

(1) The storage array consists of n(m + 1)-bit-
long words that require an S-SEED array of n x
2(m + 1) pixels (recall that the first column is re-
served for ER and that dual-rail coding is used).

(2) The response time of each algorithm is the
sum of the following three terms: setup time Tsetup,
execution time Tex, and transfer time Ttramsf. The
setup time includes the time taken to load the data
into the S-SEED array and the interrogation word
into the E-SLM, the time taken to clear control
registers, and the time taken to initialize the system's
various components, such as shutters and electro-
optical components for routing purposes. The execu-
tion time is the time taken to compute the desired
result, and the transfer time is the time taken to
transfer the computed result to the front-end or host
computer that drives the OCAPP. In this paper we
only estimate execution time.

(3) We assume that the response times of the
optical S-R latches (S-SEED's) and that of the various
logic arrays such as the NOR-gate arrays, the AND-gate
arrays, and the optical inverters are comparable and
are all equal to Tresp.

(4) Tp is light propagation time through a 4f
imaging system.

(5) T denotes the time required to load the
interrogation register I. Register I can be loaded in
parallel in a single step since it is assumed to be a
one-dimensional electrically addressed modulator.

(6) It is also assumed that reading memory words
from the storage array and reading the I register is
done at the same time and takes Tresp. The enabling

and disabling of memory words are achieved in Tresp
time, and testing the MD bit takes Treap.

A. Optical Content-Addressable Parallel Processor Cycle
Time and Estimated Execution Time for the Algorithms

1. OCAPP Cycle Time
The cycle time of a computing machine is defined to
be the time required for the shortest well-defined
processor micro-operation. 9 For the OCAPP, we de-
fine the cycle time Tproc to be the time required for the
equivalence search operation (optical comparison)
since the latter is at the core of all the algorithms
intended for the OCAPP. This time includes (1)
reading out stored data and propagating them to the
match-compare unit, (2) using the NOR function on
the stored data with the contents of the interrogation
register, and (3) propagating the output of the NOR-
gate array and producing the result in the R, G, and L
registers, as shown by

1 2 3

Tproc =Tresp + Tp + Tresp +T + Trep 3Tresp+ 2
Tp.

(13)

The numbers over the braces indicate the times
needed to accomplish each subtask as enumerated
above. The dominant factor in Eq. (13) is the response
time of the SEED arrays used for storage and logic.
Although these devices have been demonstrated to
switch with speeds in the picosecond range (for a
single device), the required optical switching power
prohibits the use of larger arrays at high speeds.
Currently, a single S-SEED gate requires approxi-
mately 2.5 pJ per switching event. Therefore if we
were to use a 256 x 256 array of these gates (this
array size has recently been reported), running at 100
MHz would require laser power in the kilowatt range.
This is excessively more power than is available from
most visible lasers. Moreover, these devices are sensi-
tive to small temperature changes, which make them
unreliable at these speeds. However, intensive re-
search efforts are being pursued to lower the energy
power requirements for larger array sizes of these
devices and for solving the problems of focusability,
operating wavelength, and stability at higher switch-
ing speeds.

A promising alternative to the SEED family of
devices is the cascadable optical logic devices called
surfaCe-Emitting Laser Logic (CELL) devices.33 These
devices are expected to have a much more tolerant
operating range than SEED's. The CELL's are ex-
pected to have a broadband input and will operate in
the gigahertz range. Of course, the proposed system
will benefit from advances in other optically ad-
dressed SLM's as well.

2. Execution Time for Threshold Search Algorithm
The time it takes for the completion of one iteration
of the threshold algorithm includes (1) reading out

3254 APPLIED OPTICS / Vol. 31, No. 17 / 10 June 1992

stored data and propagating it to the match-compare
unit, (2) using the NOR function on the stored data
with the contents of the interrogation register, (3)
propagating the output of the NOR-gate array and
producing the result in the R, G, and L registers, (4)
testing the MD bit, and (5) propagating the contents
of R to the selection unit and appropriately setting
the ER register. This process is either repeated as
many times as the word length m or terminated any
time the MD bit yields a zero light detection. The
best-case execution time is then

1 2 3 4

Ttresh = Tresp + Tp + Tresp + Tp + Trop + Tresp, (14)

and the worst-case execution time is

1 2 3 4 5

Ttresh 2 m(Tresp + Tp + Tresp + Tp + Tresp + Tresp + Tp +
2

Treap)-

(15)

The numbers over the braces indicate the time needed
to accomplish each subtask as enumerated above.
Note that the loading time for register I after each
iteration is omitted from the maximum execution
time expression since this can be overlapped with
some other activities.

3. Execution Time for Extremum Search Algorithm
The algorithm for the extremum search is quite
similar to that of the threshold search algorithm.
Therefore its execution time is equal to that of the
worst-case execution time for the threshold search,

Textrem = m(6Tresp + 3Tp). (16)

4. Execution Time for Double-Limit Search
Algorithm
As described earlier, the double-limit search algo-
rithm is implemented by using the threshold search
twice. The major processing steps are (1) searching
for words less than the upper limit, (2) disabling the
words that are greater than the upper limit (words
with corresponding Li = 0), (3) loading the lower
limit in the I register, and (4) searching for words that
are greater than the lower limit. Thus the best-case
execution time is

1 2 3 4

5. Execution Time for Adjacency Search Algorithm
The adjacency search comprises three major consecu-
tive steps; (1) a threshold search, (2) a disabling
operation, and (3) an extremum search (either a
search for a minimum value in the case of the
next-above search algorithm, or a search for a maxi-
mum value for the next-below search). Therefore its
best-case execution time is

1 2 3

Tadjc =
4

Treap + 2Tp + Tp +
2

Trep + m(6Tresp + Up),

(19)

and its worst-case execution time is

Tadjac = m(6Tresp + 3Tp) + Tp + 2 Treop + m(6Tresp + 3Tp). (20)

6. Execution Time for Ordered Retrieval Algorithm
The execution time for ordered retrieval depends on
the number of memory words to be retrieved. The
major processing step is a repeated search for an
extremum (a search for a minimum for ascending
order and a search for a maximum for descending
order).

The best-case execution time would be obtained
when there are no multiple matches (e.g., only a
single bit set to one in the R register at the end of each
extremum search operation). In such a situation, the
contents of the R register are directly routed to the
output unit where they are used to select a single
word from the storage array. In case of multiple
matches and depending on the application, we may
need to select only a single word at a time. In this
case, the output of R is routed to the response unit for
selecting the first match, which will be indicated in
register P. Then register P will be routed to the
output unit for word retrieval. Thus the best-case
execution time is

TsOrt = n[m(6Tresp + 3Tp) + 2Tp + 2 Tresp], (21)

and the worst-case time is

1 2

T.Ort = n [m(6Tresp + 3Tp) + Tp

3 4 5

+ log2 n(Tp + Treop) + T + 3 (Tresp + T)]. (22)

,-. I .

Tdouble = 4
Tresp + 2Tp + T + 2

Tresp + Ti + 4Tre.p + 2Tp, (17)

and the worst-case execution time is

1 2 3 4

Tdouble = m(6Tresp + 3Tp) + Tp +
2

Tresp + Ti + m(6Tresp + 3Tp).

(18)

The number over the braces in the worst-case execu-
tion-time expression correspond to the following sub-
tasks: (1) searching for an extremum, (2) routing
register R to the response unit, (3) selecting the first
responder in the priority register P, (4) routing P to
the output unit, and (5) outputting the selected word.
Note that the time it takes to route R to the selection
unit and to disable the selected word in the ER

10 June 1992 / Vol. 31, No. 17 / APPLIED OPTICS 3255

Table IV. Estimated Execution Time of the Parallel Algorithms on an Optical Content-Addressable Parallel Processor

Search Algorithm Minimum Execution Timea Maximum Execution Timea

Equivalence search 3 Trep + 2Tp 3Tresp + 2Tp
Threshold search 4 Tresp + 2Tp m(6Trep + 3Tp)
Extremum search m(6Tresp + 3Tp) m(6Treap + 3Tp)
Double-Limit search lOTresp + 5Tp + Ti 2

m(6Trep + 3T,) + T + T, +
2

Trep
Adjacency search (m + 1) (STreap + 3Tp) 2 m(Tresp + 3Tp) + Tp + Tres
Ordered retrieval n[m(6Tresp + 3Tp) + 2Tp + 2Tresp] n[(6m + 3)Tresp + (3m + 5)Tp + log 2 n(Tp + Tresp)]

aThe parameters m and n represent the word length and the number of operands, respectively.

register is overlapped with that of routing R to the
output unit and outputting the selected word.

Table 4 summarizes the estimated execution time
for the algorithms presented. It is important to note
that the execution time for the equivalence search,
the threshold search (best-case), and the double-limit
search (best-case) is a constant factor and is indepen-
dent of the number of words in memory. The time for
the threshold search (worst-case), the double-limit
search (worst-case), the adjacency search, and the
extremum search is proportional to the word length
and is independent of the number of words involved
in the operation. The delay time in ordered retrieval
(sorting) is proportional to the product of the number
of words to be sorted with the word length (best case).
This advantage translates into a speedup factor of m
(number of bits per word) more than that for elec-
tronic CAM's for the fundamental search algorithms.
It is expected that such a speedup factor combined
with the high speed at which these algorithms can be
optically executed will result in a system throughput
far better than any electronic associative machine can
achieve.

Vll. Discussions
Associative processing based on content-addressable
memories has been argued to be the natural solution
for nonnumerical information processing applica-
tions. Unfortunately, the implementation require-
ments of these architectures when one uses conven-
tional electronic technology have been cost prohibitive;
therefore associative processors have not been real-
ized. Instead, software methods that emulate the
behavior of associative processing have been pro-
moted and mapped onto conventional location-
addressable systems. However, this does not effect
the natural parallelism of associative processing,
namely, the ability to access many data words simul-
taneously. Optics has the advantage over electronics
of directly supporting associative processing by its
providing economic and efficient interconnects, mas-
sive parallelism, and high-speed processing.

This paper has presented the principles and initial
design concepts of an associative architecture that
matches well with optics advantages and is therefore
highly amenable to optical implementation. The archi-
tecture relies heavily on the use of space-invariant

interconnections, optical signal broadcasting and fun-
neling (combining), and the simultaneous application
of the same operation to many data points (single-
instruction multiple data mode of computing). The
motivation behind this architecture is to take advan-
tage of the ease with which these operations can be
realized with optics. A representative set of search
algorithms have been presented to show the use and
merits of the architecture. These algorithms are key
components that occur in large computing tasks. It is
important to note that these fundamental search
algorithms are implemented on the optical architec-
ture with an execution time independent of the
problem size (the number of words to be processed).
This indicates that the architecture would be best
suited to applications in which the number of data
sets to be operated on is high. We are currently
conducting a comprehensive study to determine the
type and range of applications for which the optical
architecture is most suitable. Some of the applica-
tions being investigated are (1) real-time information
retrieval, (2) database management, (3) knowledge-
base and expert system implementation, (4) list and
string processing, (5) bulk (numerical) processing
(e.g., image processing), (6) pattern and speech recog-
nition, and (7) implementation of data-driven architec-
tures. At the architecture level, we are currently
extending the one-dimensional matching concept (a
single search word is compared with the two-
dimensional array stored words) to a two-dimen-
sional scheme by which several search words are
simultaneously compared with the two-dimensional
array. Such an extension will have a major impact on
database and knowledge-base processing.

We have derived a list of requirements in order to
optically implement the architecture, and we have
presented a preliminary and simple version of an
implementation that meets these requirements. This
initial implementation version is meant to show only
the feasibility of the architecture with existing optical
nonlinear devices and conventional components. No
optimization attempts were made. Nevertheless, this
preliminary version reveals several key design issues
that will determine the physical realization of such an
optical architecture. Even if we assume the availabil-
ity of optical nonlinear devices (latches and NOR gates)

3256 APPLIED OPTICS / Vol. 31, No. 17 / 10 June 1992

in large sizes, the effective memory size will be
critically determined by the beam spreading-
combinling optics, the contrast ratio, and the fan-in
and fan-out factors of the logic elements to be used.

This research was supported by National Science
Foundation grant MIP-8909216. The author thanks
the anonymous referees for their valuable sugges-
tions.

References
1. K. Hwang and D. Degroot, Parallel Processing for Supercom-

puters and Artificial Intelligence (McGraw-Hill, New York,
1988).

2. R. Halstead, "Parallel symbolic computing," Computer 19(8),
35-43 (1986).

3. T. Kohonen, Content-Addressable Memories (Springer-Verlag,
New York, 1980).

4. C. J. Date, An Introduction to Database Systems (Addison-
Wesley, Reading, Mass., 1986).

5. R. M. Lea, "VLSI and WSI associative string processors for
cost-effective parallel processing," Computer J. 29, 486-494
(1986).

6. C. C. Foster, Content Addressable Parallel Processors (Rein-
hold, New York, 1976).

7. R. M. Lea, "Information processing with an associative paral-
lel processor," Computer 8(11), 25-32 (1975).

8. C. Y. Lee and M. C. Paul, "A content addressable distributed
logic memory with applications to information retrieval,"
Proc. IEEE 51, 924-932 (1964).

9. K. Hwang and F. Briggs, Computer Architectures and Parallel
Processing (McGraw-Hill, New York, 1984).

10. G. S. Almasi and A. Gottlieb, Highly Parallel Computing
(Addison-Wesley, Reading, Mass., 1989).

11. A. A. Sawchuk and T. C. Stand, "Digital optical computing,"
Proc. IEEE 72, 758-779 (1984).

12. A. Huang, "Architectural considerations involved in the de-
sign of an optical digital computer," Proc. IEEE 72, 780-787
(1984).

13. W. T. Cathey, K. Wagner, and W. J. Miceli, "Digital computing
with optics," Proc. IEEE 77, 1558-1572 (1989).

14. A. Louri, "3-D optical architecture and data-parallel algo-
rithms for massively parallel computing," IEEE Micro 11(2),
24-68 (1991).

15. K. Hwang and A. Louri, "Optical multiplication and division
using modified signed-digit symbolic substitution," Opt. Eng.
28, 364-373 (1989).

16. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, and
T. C. Strand, "Architectural implications of a digital optical
processor," Appl. Opt. 23, 3465-3474 (1984).

17. Y. Li, D. H. Kim, A. Kostrzewski, and G. Eichmann, "Content-
addressable memory-based optical modified signed-digit arith-
metic," Opt. lett. 14, 1254-1256 (1989).

18. F. Kiamilev, S. C. Esner, R. Paturi, Y. Fainman, P. Mercier,
C. C. Guest, and S. H. Lee, "Programmable optoelectronic
multiprocessors and their comparison with symbolic substitu-
tion for digital optical computing," Opt. Eng. 28, 396-409
(1989).

19. P. B. Berra, A. Ghafoor, M. Guizani, S. J. Marcinkowski, and
P. A. Mitkas, "Optics and supercomputing," Proc. IEEE 77,
1797-1815 (1989).

20. P. B. Berra, K. H. Brenner, W. T. Cathey, H. J. Caulfield, S. H.
Lee, and H. Szu, "Optical database/knowledgebase machines,"
Appl. Opt. 29, 195-205 (1990).

21. A. D. McAulay, Optical Computer Architectures: The Applica-

tion of Optical Concepts to Next Generation Computers (Wiley,
New York, 1991).

22. K. Wagner and D. Psaltis, "Multilayer optical learning
networks," Appl. Opt. 26, 5067-5076 (1987).

23. H. J. Caulfield, J. Kinser, and S. K. Rogers, "Optical neural
networks," Proc. IEEE 77, 1573-1583 (1989).

24. A. Louri and K. Hwang, "A bit-plane architecture for optical
computing with 2-d symbolic substitution algorithms, in Pro-
ceedings of the 15th International Symposium on Computer
Architecture (Institute of Electrical and Electronics Engineers,
New York, 1988).

25. C. Warde and A. Fisher, "Spatial light modulators: applica-
tions and functional capabilities," in Optical Signal Process-
ing, J. Horner, ed. (Academic, New York, 1987), pp. 478-524.

26. J. A. Neff, R. A. Athale, and S. H. Lee, "Two-dimensional
spatial light modulators: a tutorial," Proc. IEEE 78, 836-
855 (1990).

27. N. Streibl, K. H. Brenner, A. Huang, J. Jahns, J. Jewell, A. W.
Lohmann, D. Miller, M. Murdocca, M. E. Prise, and T. Sizer,
"Digital optics," Proc. IEEE 77, 1954-1970 (1989).

28. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith,
A. C. Gossard, and W. T. Tsang, "Large room-temperature
optical nonlinearity in GaAs/GalixAlAs multiple quantum
well structures," Appl. Phys. Lett. 44, 821-823 (1982).

29. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W.
Wiegmann, T. H. Wood, and C. A. Burrus, "The quantum well
self-electro-optic effect device: optoelectronic bistability and
oscillation, and self-linearized modulation," IEEE J. Quantum
Electron. QE-21, 1462-1476 (1985).

30. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E.
Cunningham, and L. M. F. Chirovsky, "Symmetric self-
electrooptic effect device: optical set-reset latch, differential
logic gate, and differential modulator/detector," IEEE J.
Quantum Electron. 25, 1928-1936 (1989).

31. S. D. Smith, J. G. H. Mathew, M. R. Taghizadeth, A. C. Walker,
B. S. Wherret, and A. Hendry, "Room temperature, visible
wavelength optical bistability in ZnSe interference filters,"
Opt. Commun. 51, 357-362 (1984).

32. J. L. Jewell, M. C. Rushford, and H. M. Gibbs, "Use of a single
nonlinear Fabry-Perot 6talon as optical logic gate," Appl.
Phys. Lett. 44, 172-174 (1984).

33. G. R. Olbright, R. P. Bryan, K. Lear, T. M. Brennan, G. Poirier,
Y. H. Lee, and J. L. Jewell, "Cascadable laser logic devices:
Discrete integration of photoresistors will surface-emitting
laser diodes," Electron. Lett. 27, 216-218 (1991).

34. A. W. Lohmann, "What classical optics can do for the digital
optical computer," Appl. Opt. 25, 1543-1549 (1986).

35. A. A. Sawchuk and B. K. Jenkins, "Dynamic optical intercon-
nections for optical processors," in Optical Computing, J. Neff,
ed., Proc. Soc. Photo-Opt. Instrum. Eng. 625, 145-153 (1986).

36. M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, "Optical
design of programmable logic arrays," Appl. Opt. 27, 1651-
1660 (1988).

37. A. Hartmann and S. Redfield, "Design sketches for optical
crossbar switches intended for large-scale parallel processing
applications," Opt. Eng. 28, 315-328 (1989).

38. J. Taboury, J. M. Wang, P. Chavel, F. Devos, and P. Garda,
"Optical cellular logic architecture 1: Principles," Appl.
Opt. 27, 1643-1650 (1988).

39. M. Prise, N. C. Craft, R. E. LaMarche, M. M. Downs, S. J.
Walker, L. Asaro, and L. M. F. Chirovsky, "Module for optical
logic circuits using symmetric self-electrooptic effect devices,"
Appl. Opt. 29, 2164-2170 (1990).

40. M. Prose, N. C. Craft, M. M. Downs, R. E. LaMarche, L. A.

10 June 1992 / Vol. 31, No. 17 / APPLIED OPTICS 3257

Asaro, L. Chirovsky, and M. Murdocca, "Optical digital proces-
sor using arrays of symmetric self-electrooptic effect devices,"
Appl. Opt. 30, 2287-2296 (1991).

41. A. L. Lentine, D. A. Miller, J. E. Henry, J. E. Cunningham,
L. M. Chirovsky, and L. A. Asaro, "Optical logic using electri-
cally connected quantum well PIN diode modulators and
detectors," Appl. Opt. 29, 2153-2163 (1990).

42. B. Hill, "The current status of two-dimensional spatial light
modulators," in Optical Computing Digital and Symbolic,
R. Arrathoon, ed. (Dekker, New York, 1989), pp. 1-40.

43. R. A. Athale, "Optical matrix processors," in Optical and

Hybrid Computing, H. H. Szu, ed., Proc. Soc. Photo-Opt.
Instrum. Eng. 634, 96-111 (1986).

44. A. A. Sawchuk, C. S. Raghavandra, B. K. Jenkins, and A.
Varma, "Optical cross-bar networks," IEEE Computer 20(6),
50-62 (1987).

45. G. Gheen, "Optical matrix-matrix multiplier," Appl. Opt. 29,
886-887 (1990).

46. C. C. Foster, "Determination of priority in associative
memories," IEEE Trans. Comput. C-17, 788-789 (1968).

47. M. J. Murdocca, A Digital Design Methodology for Optical
Computing (MIT, Cambridge, Mass., 1990).

3258 APPLIED OPTICS / Vol. 31, No. 17 / 10 June 1992

