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The slow execution speed of current rule-based systems 1RBS’s2 has restricted their application areas. To
improve the speed of RBS’s, researchers have proposed various electronic multiprocessor systems as well
as optical systems. However, the electronic systems still suffer in performance from the large amount of
required time-consuming pattern-matching and comparison operations at the core of RBS’s. And optical
systems do not fully exploit the available parallelism in RBS’s. We propose an optical content-
addressable parallel processor for expert systems. The processor executes the three basic RBS
operations, match, select, and act, in a highly parallel fashion. Additionally, it extracts and exploits all
possible parallelism in a RBS. Distinctive features of the proposed system include the following: 112
two-dimensional representation of data 1knowledge2 and control information to exploit the parallelism of
optics in the three RBS units; 122 capability of processing general-domain knowledge expressed in terms of
variables, numbers, symbols, and comparison operators such as greater than and less than; 132 the
parallel optical match unit, which performs the two-dimensional optical pattern matching and compari-
son operations; 142 a novel conflict-resolution algorithm to resolve conflicts in a single step within the
optical select unit. The three units and the general-knowledge representation scheme are designed to
make the optical content-addressable parallel processor for expert systems suitable for any high-speed
general-purpose RBS.
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optical parallel conflict resolution.
1. Introduction

Rule-based systems 1RBS’s2 are one of the problem-
solving methodologies that have been developed by
artificial-intelligence researchers.1 RBS’s have a vast
potential in several application areas because of the
modularity, maintainability, and expressibility of the
knowledge base as well as the simplicity of control.
The RBS types include classification, selection, diag-
nosis, design, planning, and interpretation systems
for such problems as computer-aided design, medi-
cine, configuration tasks, manufacturing, and oil ex-
ploration.2–4 In spite of these large potential applica-
tion areas, RBS’s have not been used as widely as
conventional problem-solving methods that use a
programming language such as C. One major rea-
son is the slow execution speed of the underlying
architectures implementing the RBS. The problem
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stems from the many pattern-matching and compari-
son operations necessary to solve a given query in a
RBS.
To overcome this fundamental speed problem, re-

searchers have developed new algorithms and new
architectures tailored for RBS implementations.
The new algorithms include the TREAT optimizing
compiler for sequential RBS’s,5 the PSM-E parallel
compiler for RBS’s,6 and the SWARM parallel-
programming environment.7 The new architectures
include shared memory and message-passing multi-
processor systems such as the DADOmultiprocessor,8
theNON-VONmultiprocessor,9 and data-flow comput-
ers such as the data-driven parallel-production sys-
tem.10 Although these proposed systems incorporate
new algorithms and new hardware designed to im-
prove performance over that of sequential RBS’s, they
do not show any significant performance increase at
present owing to the communication overhead and
synchronization problems.11,12
Optics has been introduced as an alternative to

improve the speed of RBS’s because of the ability to
represent knowledge in two-dimensional 12-D2 space
and because of natural implementation of the parallel
pattern-matching and comparison operations.12–15
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Previously proposed optical expert systems include a
matched-filter inference engine using a classical
VanderLugt matched filter14 and an optical expert
system based on an optical vector–matrixmultiplier.15
However, these systems do not fully utilize all the
available parallelism in a RBS, particularly rule-level
parallelism in which more than one rule is fired at a
time. Recently the authors introduced a new optical
system called the electro-optical rule-based system
1EORBS2 for the parallel implementation of RBS’s.12
Although the EORBS fully exploits the available
parallelism in RBS’s, the system still lacks generality.
In this paper we extend the concept of the optical

content-addressable parallel processor16 1OCAPP2 to a
novel architecture designed specifically for parallel
EORB’s, known as the optical content-addressable
parallel processor for expert systems 1OCAPP-ES2.
The OCAPP-ES executes the three basic RBS opera-
tions 1match, select, and act2 in a highly parallel
fashion. Additionally, it extracts and exploits all
possible parallelism in a RBS. Distinctive features
of the proposed system include the following: 112 2-D
representation of data 1knowledge2 and control infor-
mation; 122 capability of processing general-domain
knowledge expressed in terms of variables, numbers,
symbols, and comparison operators such as greater
than and less than; 132 the parallel optical match unit,
which performs the 2-D optical pattern matching and
comparison operations; 142 a novel conflict-resolution
algorithm to resolve conflicts in a single step within
the optical select unit. The three units and the
general-knowledge representation scheme are de-
signed to make OCAPP-ES suitable for any high-
speed general-purpose RBS.

2. Background

An expert system can be defined as an intelligent
system that can mimic some part of human intelli-
gence. As shown in Fig. 1, an expert system is
composed of 112 a RBS and knowledge-acquisition
facility, 122 an explanation facility, and 132 a user
interface.1 The RBS performs inferencing using the
knowledge base and the inference engine. The

Fig. 1. Logical block diagram of an expert system.
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knowledge-acquisition facility and the user interface
act as an interface unit between the RBS and the user.
The explanation facility explains to the user the way
results have been obtained. The knowledge base is
composed of rules representing universal knowledge
and facts representing current knowledge. A rule
conjoins condition elements Ci and action elements Ai

with the following format:

condition elements action elements6 6

if 1C1 ` C2 ` C3 . . . ` Cn2 ⇒ then 1A1, A2, . . . , Am2,

where ` is a logical AND operator. The condition
elements and the action elements are represented by
facts, which are the basic units of knowledge in a
RBS.
The inference engine uses the modus ponens theo-

rem as an underlying principle. The modus ponens
theorem states that, if there is an axiom of the formE1

⇒ E2 and there is another axiom of the form E1, then
E2 logically follows.17 The inference engine applies
modus ponens as follows:

current fact rule inferred fact6 6 6

51A is true2 ` 1if A then B26 ⇒ 1B is true2.

Thus with known facts and rules the inference
engine can produce new facts in either a forward-
chaining system or a backward-chaining system or
both.17 In the forward-chaining system the system
tries to find final 1goal2 states by comparing the known
facts, which describe the initial states, with the
condition-specifying if parts of the rules. In the
backward-chaining system the system tries to find
initial hypotheses by comparing the known facts,
which now describe the final 1goal2 states, with the
action-specifying then parts of the rules.
The basic operations of a RBS are as follows:

Match. For each rule, determine whether the con-
dition part of the rule matches the current facts. If a
rule satisfies the condition part, the rule is added to
the conflict set. Otherwise, the rule is discarded.
A conflict set is a set of triggered rules that have
satisfied condition parts.
Select. If the conflict set is empty, the inference

engine stops inferencing and reports the failure to the
user. If the conflict set is not empty and contains
more than one rule, the inference engine selects one
rule from the conflict set by applying a conflict-
resolution strategy such as rule ordering.18
Act. The inference engine fires the selected rule by

executing its action. Because the current facts are
changed by the fired rule, it is important to check
whether the changes agree with predefined goals.
If the goals are satisfied, the inference engine stops
inferencing and reports results to the user. Other-
wise, the inference engine must continue until the
goal is satisfied or there are no more matching rules.



In the following we discuss knowledge representation
and operation of the OCAPP-ES.

3. Overview of the Optical Content-Addressable Parallel
Processor for Expert Systems

The main objective of the OCAPP-ES is to exploit the
maximum possible parallelism in a RBS. Because
optical devices are two dimensional in nature, 2-D
data can be processed simultaneously with optics.
To exploit the parallelism available in optics fully, we
represent knowledge-base and control information in
a 2-D optical plane. In what follows we describe the
OCAPP-ES and a knowledge-representation scheme
for OCAPP-ES.

A. Description of the Optical Content-Addressable Parallel
Processor for Expert Systems

Figure 2 shows a block diagram of the OCAPP-ES.
The OCAPP-ES consists of an optical subsystem and
an electronic subsystem. The optical subsystem is
intended to implement the most time-consuming op-
erations of RBS, namely, pattern-matching and com-
parison operations, and the electronic subsystem
implements the flexible control of RBS’s. The two
subsystems complement each other. The optical sub-
system consists of an optical match unit and an
optical select unit. The optical match unit, utilizing
an OCAPP, compares in a single step all the input
facts to the input conditions of the rules and outputs a
list of selected rules. The optical select unit then
resolves conflicts among the selected rules and sends
a list of conflict-free triggered rules back to the
electronic subsystem. The electronic subsystem con-
sists of a detector controller, an electronic act unit,
and a spatial-light-modulator 1SLM2 controller. The
detector controller converts the optical signal from
the optical select unit into an electronic format. The
act unit then executes the action elements of the
triggered rules and sends the execution results to
both the front-end computer and the SLM controller.
The SLM controller is used to convert the electronic
information into an optical signal. The front-end
computer determines whether the desired solution
has been obtained by checking the newly inferred
facts from the OCAPP-ES. If the desired state is

Fig. 2. Block diagram of the OCAPP-ES.
reached, the front-end computer stops further opera-
tion of the OCAPP-ES and returns control to the
user.

B. Optical Knowledge Representation

For the optical subsystem of the OCAPP-ES, facts are
represented in a one-dimensional 11-D2 fact vector 1FV2
and the condition parts of rules are represented in a
2-D plane called the condition template 1CT2, as shown
in Fig. 3. The CT and the FV are used as inputs to
the optical match unit. As an illustration of knowl-
edge representation and the operation of the
OCAPP-ES throughout this paper, consider the follow-
ing going-to-the-theater example knowledge base:

@* ‘Going to the theater’ input rulebase *@
Rule 1: If distance . 5miles

Thenmeans 5 drive
Rule 2: If distance . 1mile and time , 15min

Thenmeans 5 drive
Rule 3: If distance . 1mile and time . 15min

Thenmeans 5 walk
Rule 4: If distance . 3miles and time . 30min

Thenmeans 5 walk
Rule 5: If means 5 drive and location 5 down-

town
Then action 5 take_a_cab

Rule 6: If means 5 drive and location 5 suburb
Then action 5 drive_your_car

Rule 7: If means 5 walk and weather 5 bad
Then action 5 take_a_coat_and_walk

Rule 8: If means 5 walk and weather 5 good
Then action 5 walk

This knowledge base decides how one can go to the
theater under various circumstances. In this knowl-
edge base the rule condition parts require three
different logical operations: equality, greater than,
and less than comparisons. It has been shown that
the equality comparison can be easily done with
optical devices performing an XOR operation.19
However, optical implementation of the magnitude
comparison operations such as greater than and less
than turns out to be a difficult task. Although these
comparison operations have been shown to be feasible
for optical implementation, they require a fair num-
ber of optical logic devices,16,20 which can dominate
cost and propagation delay.

Fig. 3. Templates for optical knowledge representation: Each
cell of the fact vector 1FV2 represents a fact variable, and the
contents of the cell represent the value of the variable. In the
condition template 1CT2 each row represents a rule and each column
represents a condition element. Each fact variable, FVj, is
used as a condition-element variable CT1i, j 2, where i represents the
rule number and j represents the FV index.
10 August 1995 @ Vol. 34, No. 23 @ APPLIED OPTICS 5055



To reduce the number of required optical logic
devices and the design complexity while enhancing
system feasibility, we introduce a solution that can
evaluate the greater-than and less-than operations
with only the equality-checking optical hardware.
In the proposed method, instead of performing a
greater-than or less-than comparison with a specific
number at the left-hand side of each condition ele-
ment, we can perform a logically equivalent operation.
As an illustration, consider the condition element
1distance . 1 mile2 of rule R1 of the going-to-the-
theater example rule base. This condition element
becomes true when the variable distance receives any
number greater than 1. In other words the condition
element compares whether the input value of the
variable distance is in the range from 1 mile to `
miles. Thus by assigning a unique symbolic interval
constant distance_set_A for the interval from 1mile to
` miles and by performing the equality comparison
with the symbolic interval constant distance_set_A,
we can obtain the greater-than comparison result.
The above translationmethod can be generalized as

follows: First, we assign an appropriate symbolic
constant for both the condition element related to the
greater-than or less-than comparison and the value of
the fact element used as the condition element.
Next, we perform an equality comparison instead of a
greater-than or less-than comparison between the
input value of the variable 1left-hand side of a condi-
tion element2 and the prescribed symbolic constant
1right-hand side of a condition element2. With the
translation method the greater-than and less-than
checking condition elements of the going-to-the-
theater example rule base are translated into the
condition elements with the symbolic interval con-
stants and equality comparators, as shown in Table 1.
This method replaces greater-than and less-than

comparison operations using exact values for a vari-
able with equality comparison with a symbolic inter-
val constant representing the corresponding interval.
However, owing to the nature of expert systems 1i.e.,
symbolic computation in the decision-making environ-
ment rather than numerical computation2, the trans-
lation method will affect neither the overall perfor-
mance of the system nor the generality of the proposed
system. The number of symbolic interval constants
created for a variable will be small considering that
the major application domain of expert systems is in

Table 1. Translation of Condition Elements with Greater-Than or
Less-Than Comparison Operators into Condition Elements with

Corresponding Symbolic Constants

Input Condition
Elements with Magnitude

Comparison Operators 1., ,2

Translated Condition
Elements with

Symbolic Interval Constant

distance . 1 mile distance 5 dist_set_A
distance . 3 mile distance 5 dist_set_B
distance . 5 mile distance 5 dist_set_C
time , 15 min time 5 time_set_A
time . 15 min time 5 time_set_B
time . 30 min time 5 time_set_C
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business and management3 rather than numerical
computation. Even if the number of created sym-
bolic interval constants exceeds the capacity that one
variable can represent, the front-end computer can
easily create another variable to share the remaining
symbolic interval constants. The translationmethod
requires preprocessing in the host computer during
the rule compile time. Hence this will not affect the
execution time of the OCAPP-ES. On the other
hand, the additionally created variable will take up
one additional variable slot in the opticalmatch@select
unit. However, owing to the small number of origi-
nal symbolic interval constants and the nonnumerical
nature of expert systems, the additionally occupied
variable slot should not cause any problem. This
translation process can be regarded as a special case
of fuzzy logic.21,22
From Table 1, the original going-to-the-theater

example rule base is modified into the translated rule
base with equality-checking elements only as follows:

@* Translated rulebase for the ‘Going to the the-
ater’ example *@

Rule 1: If distance 5 distance_set_C
Thenmeans 5 drive

Rule 2: If distance 5 distance_set_A and time 5

time_set_A
Thenmeans 5 drive

Rule 3: If distance 5 distance_set_A and time 5

time_set_B
Thenmeans 5 walk

Rule 4: If distance 5 distance_set_B and time 5

time_set_C
Thenmeans 5 walk

Rule 5: If means 5 drive and location 5 down-
town

Then action 5 take_a_cab
Rule 6: If means 5 drive and location 5 suburb

Then action 5 drive_your_car
Rule 7: If means 5 walk and weather 5 bad

Then action 5 take_a_coat_and_walk
Rule 8: If means 5 walk and weather 5 good

Then action 5 walk

Once the translated rule base is ready, fact vari-
ables related to condition elements with a greater-
than or less-than operator can be modified. For
these variables the values of facts are translated into
the corresponding symbolic constants instead of using
numbers given by the user. For example, when the
fact variable distance receives the number 2 as input,
the translated value of the fact becomes dist_set_A.
When the knowledge base is ready, the electronic

host computer modifies the translated knowledge
base into the execution format for the optical infer-
ence engine by using templates, shown in Fig. 3. In
Fig. 4 each cell of the CT and the FV represents the
name of a variable. The cell contains the value of the
variable. As an illustration, assume that we have a
fact 1location 5 downtown2 and that it is assigned to



the ith cell of the FV, FVi. Then FVi represents the
variable name location, and the content of FVi be-
comes downtown. Next, assume that the condition
element of rule R1 1distance 5 distance_set_C 2 is to be
assigned to the jth column of the ith row of the CT.
Then, cell CT1i, j 2 will represent the variable distance,
and the contents of CT1i, j 2 will have the number
distance_set_C.
Each cell of Fig. 4 is further divided into n pixels,

creating an n-bit word-representation system. Fig-
ure 5 shows the 8-bit binary assignment scheme for
numbers and symbols 1including symbolic interval
constants, symbolic variables, and values2 used in the
going-to-the-theater example. We create the num-
bers and symbols by distinguishing the most-signifi-
cant bit, b7. If b7 is 1102, the word represents a
symbol 1number2. Thus a number in the range from
00000000122 to 01111111122 can be represented. We
further divide the symbols into the symbolic variable,
the symbolic value, and the symbolic interval con-
stant by distinguishing the next-most-significant bit,
b6. If b6 is 1102, the word represents either a sym-
bolic variable or a symbolic value 1a symbolic interval
constant2. Then, we represent each unique symbol
by assigning a unique binary number to the symbol,
using the remaining bits.
Once the symbol and number representations are

set, the host computer builds the FV and the CT, as
shown in Fig. 6. Each fact is assigned to a unique
cell of the FV and a unique column of the CT. Then
each cell of the FV is filled with the current value of
the facts known to the user. In this example, the

Fig. 4. Optical knowledge-representation example using a fact
1location 5 downtown2 for the FV and a condition element
1distance 5 dist_set_C 2 of the rule R1 for the CT.

Fig. 5. Example of 8-bit binary value assignment for the vari-
ables, symbolic values, symbolic interval constants, and numbers
for the going-to-the-theater example. Numbers are identified by
the 0 in the most-significant bit 1bit b72. Symbolic interval
constants for intervals are identified by the 11 in bits b7 and
b6. b5 and b4 are used to identify the name of symbolic interval
constants for intervals, and the remaining bits are used to specify
various intervals in a set. Symbolic variables and values are
identified by the 10 in bits b7 and b6. The rest of the bits are used
to identify various symbolic variables and values in this case.
currently known value of fact distance is 10, the fact
time is 20, the fact location is downtown, and the rest
are unknown. Because the variables time and dis-
tance belong to the interval evaluating variables, the
host computer must assign symbolic constants for the
values of these variables. For example, the value 20
of the variable time can be translated into time_set_B
(11100010) because time_set_B becomes true for input
value of time .15. On the other hand, the input
number 10 of the variable distance will be translated
into distance_set_D (11010ddd), where d represents
don’t care. The three d bits represent the symbolic
interval constant, distance_set_D, as a union of the
three sets, distance_set_A (11010001), distance_set_B
(11010010), and distance_set_C (11010100). The rea-
son why we use the don’t care bit for a union of
multiple symbolic interval constants is discussed
later in this paper. The variable location keeps its
original value, downtown.
In the CT the values described in the condition

parts of the translated rule base are written to cells of
the CT. For example, in the case of the condi-
tion element 1distance 5 distance_set_C 2 of rule R1,
dist_set_C is assigned to the cell corresponding to the
variable distance of the first row of the CT. For a
variable that is not used as a condition element of a
rule, d is assigned to the corresponding cell. Next,
we discuss the OCAPP-ES units.

Fig. 6. FV and CTwith data for the going-to-the-theater example.
It is assumed that the input value of the fact distance from the
user is 10, time is 20, location is downtown, and the rest are
unknown. The host computer translates the interval evaluating
variables into corresponding symbolic interval constants. For
example, the input number 10 of the fact distance is translated into
a symbolic interval constant, distance_set_D (11010ddd), d:don’t
care. Distance_set_D represents the union of the three symbolic
interval constants distance_set_A (11010001), distance_set_B
(11010010), and distance_set_C (11010100), as shown in Table
1. Likewise, the input number 20 of the fact time is translated
into a symbolic interval constant, time_set_B (11100010). If a fact
does not belong to the interval evaluating variables, the binary
number for the symbol is written in the FV with the assignment of
Fig. 4. We construct the CT by writing the value specified at the
right-hand side of each condition element of the translated rule
base at the cell specified by the variable of the left-hand side of
each condition element. The d bits in the CT represent the
variables that are not used in the rule.
10 August 1995 @ Vol. 34, No. 23 @ APPLIED OPTICS 5057



C. Description of the Optical Match Unit

The optical match unit of the OCAPP-ES is designed
around the original OCAPP design.16 The OCAPP is
an optical parallel data-base@knowledge-base proces-
sor based on an optical content-addressable memory.
The system implements symbolic computing tasks
such as searching, sorting, and information retrieval
in a highly parallel fashion. The OCAPP is com-
posed of a selection unit, a match@compare unit, a
response unit, an output unit, and a control unit.
The match@compare unit of an OCAPP is used as the
optical match unit of the OCAPP-ES. A detailed
explanation and implementation of each OCAPP unit
and the algorithms implemented on the OCAPP are
presented in Refs. 16 and 23.
The optical match unit compares an input FV of

given facts with a CT of the condition parts of given
rules to generate a selected-rule list. As shown in
Fig. 7, the comparison is performed by a vector–
matrix multiplier performing a 2-D XOR logic function
followed by a masking operation.
Figure 8 explains how the selected-rule vector 1SRV2

is obtained for a given FV and CT. First, each bit of
FVi is vertically expanded to cover a column of the CT.
The expanded 2-D FV is then XOR’ed with the CT to
produce a 2-D intermediate XOR result plane. On the
2-D intermediate XOR result plane, matches between
the FV and the CT form dark output pixels, whereas
unmatched pixels create a bright output.
This intermediate XOR result plane is then imaged

onto the mask. The latter blocks the contributions
from the unused condition elements of a rule as well
as the bits specified as d bits in the mask. Recall
from the example that the d bits in the distance_set_D
(11010ddd) are used to represent a union of the three
symbolic interval constants distance_set_A (11010001),
distance_set_B (11010010), and distance_set_C
(11010100). Now, by blocking of the three d bits, the
output d bits will become dark 1matched2. Thus if the
distance_set_D is compared with any of the three
symbolic interval constants, the three d bits will
become dark 1matched2 for any input.
The XOR result after the mask is then logically OR’ed

to produce a selected-rule vector 1SRV2. In the 2-D
XOR result image, if there is at least one unmatched
condition element in a rule 1represented by a row2,
there should be some light in the row of that rule.
On the other hand, if the condition elements consist

Fig. 7. Logical block diagram of the OCAPP-ESmatch unit: The
FV is expanded vertically and XOR’ed with the CT. The 2-D XOR

result is then masked by the DM to filter out unnecessary
data. The XOR result after the DM is then OR’ed rowwise to
produce a selected-rule column vector.
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of only either matched or don’t care pixels, then the
absence of light indicates the row is matched.
Therefore in the SRV, bright pixels indicate un-
matched rules and dark pixels represent matched
rules. The match operation is performed in parallel
with an execution time, independent of the number of
matches to be performed.

D. Description of the Optical Select Unit

Once the SRV is available, the optical select unit
resolves conflicts among the selected rules and pro-
duces a triggered-rule vector 1TRV2, which represents
all the rules that can be fired in parallel. In the SRV
and the TRV each pixel represents a rule. Whereas
the SRV represents candidate rules that can be fired,
the TRV represents a list of rules to be fired. Instead
of traditional conflict-resolution strategies that en-
able only one rule among the selected rules to be fired
at a time, the optical select unit of the OCAPP-ES
utilizes a new parallel conflict-resolution scheme to
maximize performance by firing as many rules as
possible.
The new parallel conflict-resolution scheme is based

on a dependency analysis among the rules so that
rules can be fired simultaneously without any undesir-
able side effects.24 For optical implementation of
this parallel conflict-resolution scheme, an algorithm
creates a conflict-resolution control matrix 1CRCM2 for
any given rule base. The CRCM performs parallel
rule selection by taking a 1-D SRV as an input,
controlling specific SRV rules according to the depen-
dencies, and generating a 1-D output TRV. The test
necessary for detecting dependency between rules is
exhaustive, as each rule of the rule base must be
tested against all the remaining rules. However,
because these analyses can be done at compile time
for a given rule base, the dependency testing should
not incur any run-time overhead. For a detailed
explanation of the proposed new algorithm and for an
example of constructing a CRCM, please refer to Ref.
30.
Figure 9 shows the CRCM and an execution ex-

ample of the optical select unit for the eight-rule
going-to-the-theater example knowledge base. The
figure illustrates how the 1 3 8 TRV 11 0 0 0 0 0 0 02
is generated with the 8 3 1 11 0 1 0 0 0 0 02T SRV
from the optical match unit and the 8 3 8 CRCM.
First, the input selected-rule column vector is ex-
panded horizontally so that each column of the
CRCM can receive the SRV. Each CRCM pixel is
configured such that the pixel will perform an XNOR

1equivalence2 operation between incoming input data
and the control data specified in the CRCM pixel.
If a control datum is set to don’t care, the pixel should
produce a 1 regardless of input data. Then the
intermediate image, as shown in Fig. 9, is AND’ed
columnwise to produce a row vector representing the
desired TRV, which is 11 0 0 0 0 0 0 02 in this example.
Again, the conflict resolution 1rule selection2 is per-



Fig. 8. Match operation result for the going-to-the-theater example. The input FV is expanded to cover the CT. The XOR logic function
is then performed with the expanded FV and CT to produce a 2-D XOR result image. The XOR result is imaged onto the dynamic mask 1DM2,
which blocks the d bits, b2 2 b0, and the unused cells 1condition elements2 in the rule. Finally, the masked XOR result image is OR’ed
rowwise to produce a selected-rule vector 1SRV2.
formed in parallel and is independent of the number
of rules to be fired.

E. Description of the Act Unit

When the triggered-rule vector 1TRV2 becomes avail-
able, the front-end computer converts the optical
TRV into an electronic form by means of the detector
array. Then the electronic act unit executes the
action part of the triggered rules and updates the
changes caused by the rule-firing operation for the
front-end computer as well as for the optical match
unit. The act unit is implemented with electronics
because of the following reasons: whereas the match
and select operation requires computationally inten-
sive operations 1e.g., comparing each rule of the rule
base to all other rules2, the act operation requires
simple assertion operations for only the triggered
rules of the TRV. Also, the electronic act unit will
ease the implementation of extra services such as
explanations about the decisions being made. In
addition, an optical act unit will add more hardware
complexity while providing only simple operations
that can be easily performed with electronics. In our
example we have only one triggered rule, R1, which
asserts the value of the action variable means to
drive.
Next, we discuss the scalability problem in which

the given knowledge-base 1rules and facts2 size ex-
ceeds the capacity of a given optical implementation.
We solve this scalability problem in the RBS by taking
advantage of the modular characteristic of the RBS.18
This characteristic stems from the fact that the
structure of human knowledge can be modeled in a
modular and hierarchical structure. Thus if the size
of the given knowledge base is greater than the size of
the available hardware, the problem should be parti-
tioned into a set of subproblems whose size fits the
available hardware.
10 August 1995 @ Vol. 34, No. 23 @ APPLIED OPTICS 5059



Fig. 9. 8 3 8 CRCM array for the eight-rule going-to-the-theater example.
4. Implementation of the Optical Content-Addressable
Parallel Processor for Expert Systems

The OCAPP-ES consists of an optical match unit, an
optical select unit, an electronic act unit, and 2-D
optical sources and detectors for input–output inter-
facing with the front-end computer. A 1-D optical
fact vector and a 2-D optical rule plane are created
either by use of a 2-D laser diode array or modulation
of a single laser with a 2-D spatial light modulator
1SLM2. The SLM can be a ferroelectric liquid-crystal
SLM,25 an electrically addressedmicrochannel SLM,26
or a silicon lead-lanthanum-zirconate-titanate SLM.27
Because an OCAPP-ES must also return results to
the electronic host, an optical detector array is needed
to convert optical signals into electronic ones. An
OCAPP-ES also needs a 2-D optical logic gate array to
perform the XOR logic function. The XOR logic func-
tions are performed by a pair of liquid-crystal SLM’s
and by control of the polarization. Optical implemen-
tation of the match and select units constituting the
OCAPP-ES and electrical implementation of the act
unit are discussed in the following.

A. Implementation of the Optical Match Unit

The optical match unit consists of three SLM’s
1SLM1, SLM2, and SLM32, three cylindrical lenses
1CL1, CL2, and CL32, and two polarizers 1P1 and P22,
as shown in Fig. 10. The three SLM’s are pixellated,
electrically addressed, ferroelectric liquid-crystal

Fig. 10. Implementation of the optical match unit: The image of
SLM1 is vertically expanded and XOR’ed with the data of SLM2 by
means of cylindrical lenses CL1 and CL2. The XOR result image is
then filtered with polarizer P1. The DM disables the transmis-
sion of unnecessary pixels. The intermediate image after the DM
is then focused into a vertical line 1SRV2. Each pixel of the SRV
represents a logical OR of all the pixels in a row of the image after
the DM.
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SLM’s configured to rotate the incident light by 90° in
bit positions containing a logical value of 1 and 0° for
those containing a logical value of 0. SLM1, SLM2,
and P1 of Fig. 10 are configured as a vector–matrix
multiplier to perform 2-D XOR logic functions, as
shown in Table 2. A uniform beam of vertically
polarized light illuminates SLM1. The logical val-
ues of SLM1 are encoded such that vertically polar-
ized light emanating from the device represents a 0
and horizontally polarized light represents a 1. The
combinations of possible polarization rotations experi-
enced by a beam passing through SLM1 and SLM2
are functionally equivalent to a Boolean XOR operation.
Because CL1 and CL2 image a bit position of SLM1
onto a bit slice 1column2 of SLM2, the resulting 2-D
data plane after SLM2 expresses the result of a
bitwise matrix of XOR gates. Polarizer P1 then dark-
ens any horizontally polarized light so that 1’s are
represented by the absence of light and the 0’s
continue to be represented by vertically polarized
light.

Table 2. Truth Table for the Optical XOR Logic Function Using SLM1 and
SLM2 and Polarizer P1of Fig. 10 a

SLM1 Input SLM2 Input XOR Result After P1: Pass 1F2

0 1F2 0 1No rotation2 0 1F2 Bright 1F2: unmatched
0 1F2 1 1Rotate 90°2 1 1&2 Dark: matched
1 1&2 0 1No rotation2 1 1&2 Dark: matched
1 1&2 1 1Rotate 90°2 0 1F2 Bright 1F2: unmatched

aA logical value of 0 is assigned to a vertically polarized beam 1F2,
and a logical value of 1 is assigned to a horizontally polarized beam
1&2. SLM’s in the system are assumed to be electrically address-
able liquid-crystal SLM’s. In the SLM’s the pixels with a logical
value of 1 rotate the incoming light polarization by 90°, and the
pixels with a logical value of 0 pass light without rotation. First,
SLM1 is illuminated with a vertically polarized beam so that the
pixels with a logical value of 0 have vertical polarization, and the
pixels with a logical value of 1 have horizontal polarization. SLM2
then performs the XOR logic function by rotating the pixels with a
logical value of 1 102 by 90° 10°2. Then, the pixels with horizontally
polarized light 1logical 1: matched2 of the XOR result are blocked
by use of polarizer P1, which passes vertically polarized light
1logical 0: unmatched2 only.



The vector–matrix multiplier is then followed by
SLM3, which behaves as a dynamic mask 1DM2,
shown in Fig. 10. The purpose of the DM is to block
the transmission of the don’t care pixels while passing
the other pixels, as shown in Table 3. After the DM,
the matched pixels and the don’t care pixels are dark,
and the unmatched pixels will remain bright. CL3
focuses the image after the DM into a vertical line,
which represents the SRV. The SRV is routed to the
optical select unit.

B. Implementation of the Optical Select Unit

Figure 11 shows the implementation of the optical
select unit. The optical select unit consists of three
SLM’s 1SLM1, SLM2, and SLM32, three cylindrical
lenses 1CL1, CL2, and CL32, two beam splitters 1BS1
and BS22, and two polarizers 1P1 and P22. In the
optical select unit the three SLM’s of Fig. 11 are
configured to rotate the polarization of the incident
light by 90° in bit positions containing a logical value
of 0 and 0° for those containing a logical value of 1.
SLM1 1an optically addressable SLM2 and BS1 are
used to convert the intensity-encoded SRVi from the
opticalmatch unit into the polarization-encoded SRVp,
as shown in Table 4. The vertically polarized colli-
mated beam going into BS1 is sent into the reflective
side of SLM1 to modulate the incoming SRVi, which
simultaneously writes its value to the photoconduc-
tive side of SLM1. If the input pixel of SRVi is bright
1logical 02, SLM1 will rotate the polarization of the
vertically polarized light incident upon it at the
photoreflective side by 90° to produce a horizontal
polarization. On the other hand, if the input is dark
1logical 12, the output pixel will have a vertical polar-
ization. Thus SRVp is encoded such that a logical
value of 0 1an unselected rule2 is represented by
horizontal polarization, whereas a logical value of 1 1a
selected rule2 is represented by vertical polarization.
Next, SLM2 and SLM3 of Fig. 11 work together to

realize the CRCM. The logical values of SLM2 are
encoded such that vertically polarized light emanat-
ing from the device represents a 1 and horizontally
polarized light represents a 0, as shown in Table 5.

Table 3. Truth Table for the DM and P2 of Fig. 10 a

After P1: Pass 1F2 DM Input After P2: Pass 1F2

F 0 1No rotation2 Bright 1F2
F 1 1Rotate 90°2 Dark

dark 0 1No rotation2 Dark
dark 1 1Rotate 90°2 Dark

aThe DM is assumed to be an electrically addressable liquid-
crystal spatial light modulator 1SLM2, and F represents a verti-
cally polarized beam. In the table a logical value of 1 is assigned to
the don’t care pixels of the DM, and a logical value of 0 is assigned
to the other pixels. In the DM the don’t care pixels rotate the
incoming light polarization by 90°, and the other pixels remain
unchanged. With vertically polarized input light a vertical polar-
izer, P2, placed behind the DM selectively blocks the don’t care
pixels. After this unit, the matched pixels and the don’t care
pixels will be dark and the unmatched pixels will be bright.
The combinations of possible polarization rotations
experienced by a beam passing through SLM2 are
functionally equivalent to a Boolean XNOR operation.
Because CL1 and CL2 image a bit position of SRVp
onto a bit slice 1column2 of SLM2, the resulting 2-D
data plane after SLM2 expresses the result of a
bitwise matrix of XNOR gates. Polarizer P1 then
darkens any horizontally polarized light so that, after
P1, 0’s are represented by the absence of light and the
1’s continue to be represented by vertically polarized
light.
SLM3 provides light for the don’t care pixels of the

CRCM. With a vertically polarized collimated input
beam, SLM3 controls the polarization angle of each
pixel as follows: If the pixel corresponds to the don’t
care pixel, it will have 90° polarization rotation to
have a horizontal polarization. On the other hand, if
the pixel does not correspond to the don’t care pixel, it
will preserve the vertical polarization. Then, by use
of P2, which passes only horizontally polarized light,
only the don’t care pixels will become bright. Finally,
the two intermediate data planes from SLM2 and
SLM3 aremerged by the use of BS2 and focused into a
horizontal line to form a TRV.

C. Implementation of the Act Unit

The act unit is implemented with software because of
the reasons given in Subsection 3.E. One implemen-
tation method for the act unit is keeping a simple
table that records the rule number, the name of the
variable to be triggered, and its value. To perform

Fig. 11. Implementation of the optical select unit: The polariza-
tion-encoded selected-rule vector 1SRV2 is expanded and XOR’ed
with the CRCM in SLM1. Then the two data planes from SLM2
and SLM3 are spatially added by the use of beam splitter BS2.
The added image is then collimated with cylindrical lens CL3 to
form a TRV.

Table 4. Conversion of the Intensity-Encoded SRV i to
Polarization-Encoded SRV p at SLM1 of Fig. 11 a

Input
SRVi

1before SLM12
SRVp

1after SLM12

Logical 1 No light F
Logical 0 Light &

aAssuming a vertically polarized collimated beam is incident
upon the photoreflective side of SLM1, the reflected light will be
controlled by the intensity of the input pixel at the photoconductive
side 1SRVi 2 of SLM1. If the input pixel of SRVi is bright 1logical 02,
the SLM1 will rotate the polarization by 90° to produce a horizontal
polarization. If the input is dark 1logical 12, the pixel polarization
at the photoreflective side of SLM1 remains vertical.
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the act operation, the detector unit of the electrical
subunit of the OCAPP-ES converts the optical TRV
into an electrical TRV, which is a set of the triggered-
rule numbers. Then executing the action parts of
the rules will be a matter of accessing the table with
the rule numbers as indices and of updating the
values of the corresponding variables.

5. Theoretical Estimation of Execution Time and
Number of Processed Rules per Second

In this section the execution time and the maximum
number of rules that can be processed per second in
the OCAPP-ES are estimated. In what follows we
use the following terms and assumptions for estimat-
ing the execution speed:

c The dimension of available 2-D SLM’s is n 3 n.
c The response time of the SLM’s and optical logic

gate arrays is Tr.
c The setup time for a SLM of size n 3 n is Ts2.
c The setup time for a SLM of size n is Ts1.
c The detector response time is Td.
c The propagation delay of optical passive devices

such as lenses and mirrors is negligible compared
with that of the SLM’s.

A. Execution Time

In general the execution time of a system can be
regarded as the sum of the system initialization time
Ti and the system processing time Tp. Ti includes
the SLM setup times in the optical match and select
units. Although these two units have six SLM’s in
total, these SLM’s can be accessed simultaneously:
hence Ti becomes Ts2. In an OCAPP-ES, Tp can be
further divided into the optical system processing
time Top, the conversion time from optical signal to
electrical signal Toe, the act operation processing time
Tap, and the conversion time from electrical signal to
optical signal Teo. Top is equal to 5Tr because there
are five SLM’s in the major optical signal path in the
OCAPP-ES. Toe is the detector readout time Td; Teo
is the n 3 n SLM modulation time Ts2. Thus Tp
becomes 5Tr 1 Td 1 Ts2 1 Tap. Therefore the overall
execution time of the OCAPP-ES, Te, becomes

Te 5 Ti 1 Tp 5 Ts2 1 x15Tr 1 Td 1 Ts2 1 Tap2, 112

where x represents the number of iterations neces-
sary to solve a given query.

Table 5. Summary of XNOR Logic Function at SLM2 of the Optical Select
Unit of Fig. 11 a

SLM1 Output SLM2 Setup XNOR Result After P1: Pass F

0 1&2 0 1Rotate 90°2 1 1F2 Bright: F
0 1&2 1 1No rotation2 0 1&2 Dark
1 1F2 0 1Rotate 90°2 0 1&2 Dark
1 1F2 1 1No rotation2 1 1F2 Bright: F

aThe logic performed is similar to that of Table 2 except for the
assignment of polarization for the logical values and for the
polarization rotation angle control at the second SLM.
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B. Number of Processed Rules per Second

Next, the maximum number of rules that can be
processed per second is estimated. For the n 3 n
SLM the number of rules that can be represented in
the OCAPP-ES becomes n. Because the processing
time of the OCAPP-ES, Tp, is equal to 5Tr 1 Td 1
Ts2 1 Tap, the maximum number of rulesR that can be
processed per second is

R 5
n

5Tr 1 Td 1 Ts2 1 Tap

. 122

As an example, assuming that the technology per-
mits, n 5 256, Tr 5 1026 s, and Ts2 5 Tap 5 Td 5 1023;
then an OCAPP-ES can execute roughly 8.52 3 104
rules@s. As a comparison, the NON-VON is a multi-
processor system that is composed of 32 powerful
large processing elements and 16,000 small process-
ing elements and is estimated to process 850 rules@s.9
Another multiprocessor called RUBIC 1rule-based in-
ference computer2 is estimated to process 4 3 103
rules@s.28 With the processing capability of 8.52 3
104 rules@s, the OCAPP-ES is expected to achieve a
system throughput an order of magnitude better than
any electronic RBS can achieve.

6. Conclusion

Althoughmany optical systems have been proposed to
improve the performance of electronic rule-based
expert systems, these systems still suffer from their
limited exploitation of the available parallelism in
RBS’s or from being too application specific. To
overcome these limitations and to take advantage of
optics parallelism, we have proposed an optical con-
tent-addressable parallel processor for expert sys-
tems 1OCAPP-ES2 in this paper. Distinctive features
of the OCAPP-ES include the following: 112 2-D
representation of data 1knowledge2 and control infor-
mation; 122 capability of processing general-domain
knowledge expressed in terms of variables, numbers,
symbols, and comparison operators such as greater
than and less than; 132 the parallel optical match unit
1designed around the match@compare unit of the
OCAPP2, which performs the 2-D optical pattern
matching and comparison operations; 142 a novel con-
flict-resolution control-matrix 1CRCM2 algorithm to
resolve conflicts in a single step within the optical
select unit. We have detailed the implementation of
various units of the system. We have also shown
that the estimated maximum number of rules that
can be processed per second is 8.52 3 104. It is
expected that further developments in optical devices
technology 1logic, memory, smart SLM’s2 will further
increase the performance of the OCAPP-ES.

This research was supported by National Science
Foundation grant MIP-9113688.
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