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The interconnection network structure can be the deciding and limiting factor in the cost and the
performance of parallel computers. One of the most popular point-to-point interconnection networks for
parallel computers today is the hypercube. The regularity, logarithmic diameter, symmetry, high
connectivity, fault tolerance, simple routing, and reconfigurability 1easy embedding of other network
topologies2 of the hypercube make it a very attractive choice for parallel computers. Unfortunately the
hypercube possesses a major drawback, which is the complexity of its node structure: the number of
links per node increases as the network grows in size. As an alternative to the hypercube, the binary de
Bruijn 1BdB2 network has recently received much attention. The BdB not only provides a logarithmic
diameter, fault tolerance, and simple routing but also requires fewer links than the hypercube for the
same network size. Additionally, a major advantage of the BdB network is a constant node degree: the
number of edges per node is independent of the network size. This makes it very desirable for
large-scale parallel systems. However, because of its asymmetrical nature and global connectivity, it
poses a major challenge for VLSI technology. Optics, owing to its three-dimensional and global-
connectivity nature, seems to be very suitable for implementing BdB networks. We present an
implementation methodology for optical BdB networks. The distinctive feature of the proposed
implementationmethodology is partitionability of the network into a few primitive operations that can be
implemented efficiently. We further show feasibility of the presented design methodology by proposing
an optical implementation of the BdB network.
Key words: de Bruijn network, perfect shuffle, optical implementation, parallel processing.
1. Introduction

The choice of the interconnection network structure is
critical in the design of parallel computers because
communication between processors 1for multicomput-
ers2 and between processors and memory modules
1for multiprocessors2 dominate the cost of the ma-
chine, the power budget, the hardware 1wiring, pack-
aging, etc.2, and the overall performance.1–4 Many
topologies have been explored for parallel computers,
including multistage interconnection networks such
as omega, baseline, banyan, and crossover, and point-
to-point interconnection networks such as hyper-
cube, mesh, ring, bus, and star.3,5 Currently, two of
the most popular point-to-point topologies are the
binary n-cube or hypercube6–9 and the mesh.10–13
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The hypercube topology is completely symmetric with
a logarithmic diameter 1the diameter of a network is
defined to be the largest number of hops in the
shortest path between any two nodes. For an
N-node network the diameter is log2N2. It is also
fault tolerant and has very simple routing algorithms.
However, the shortcoming of the hypercube network
is the complexity of the node structure: the number
of links per node grows as the network size increases.
This property makes it very difficult to construct
large-scale systems with the hypercube topology.
The second popular network is the mesh topology.
The mesh can be implemented easily because of the
simple regular connection and the small number of
links 1four2 per node 1constant node degree2. Because
of its constant node degree, the mesh is highly
scalable. The mesh network also suffers from a
major limitation, which is its large diameter 1N1@2 for
an N-node network2, along with its limited connectiv-
ity.
As an alternative to the hypercube and the mesh

topologies, the de Bruijn topology14,15 has recently



received much attention. Its properties and applica-
tions have been studied by several researchers.2,16–19
Its topological properties show that the de Bruijn
network is a good candidate for next-generation inter-
connection networks of parallel computers after the
hypercube. The de Bruijn network behaves as the
hypercube and retains most of its desired properties
1logarithmic diameter, fault tolerance, and simple
routing2. The de Bruijn network possesses twomajor
additional advantages. The first advantage is that
the de Bruijn network requires fewer physical links
than the hypercube for the same network size 1the
same number of nodes2. For example, for a network
of 1024 nodes, the hypercube network requires 5120
physical links, whereas the de Bruijn network re-
quires only 2048 links. The secondmajor property of
the de Bruijn network is that the node degree is
constant, whereas in the hypercube the node degree
varies as log2 N for anN-node network. For a binary
de Bruijn 1BdB2 network the node degree is always
four regardless of the network size. The node degree
of the mesh network is also four, independent of the
network size, but the BdB network has a much
smaller diameter than the mesh for the same network
size.
Recent work has also shown that most of the

algorithms proposed for the hypercube network can
be easily transposed onto the de Bruijn network
without any increase in the complexity of the algo-
rithms.16 This, coupled with a constant node degree,
makes the de Bruijn network a highly desirable
interconnection architecture for future large-scale
systems.
Despite itsmany attractive properties, the de Bruijn

network is considerably less known compared with
the hypercube network because it is much less ame-
nable to VLSI implementations. The VLSI imple-
mentation of the de Bruijn network is nontrivial
because the network is neither fully symmetric nor
modular,16,17 as is the case with other popular net-
works. Additionally, the de Bruijn network requires
many more global connections than the hypercube
and the mesh, and such global connections make its
VLSI implementation more difficult. Currently, the
de Bruijn topology is used in a few parallel machines:
the Triton@1 computer, developed at the University of
Karlsruhe,20 and the de Bruijn VLSI network, with
8192 nodes, which is being built by NASA’s Galileo
project.17
Optics, owing to its three-dimensional 13-D2 nature,

global-connectivity property, and flexible signal-
routing capability, seems to be very suitable for
realizing nonsymmetric global connections.21–26 In
this paper we propose an implementation methodol-
ogy for the optical de Bruijn network. The proposed
methodology provides a partitionable optical imple-
mentation; i.e., the de Bruijn network is first decom-
posed into a few primitive operations, each of which
can be efficiently implemented, and then these opera-
tions are combined together to realize the de Bruijn
network. An optical implementation of the de Bruijn
network is proposed to show feasibility of the design
methodology. It is shown that a BdB network with
4096 nodes can be integrated in a 4-cm2 area with the
total power efficiency being as high as 48%.

2. Definition and Properties of Binary de Bruijn
Networks

A binary de Bruijn network with 2n nodes is denoted
by n-BdB. Let node i 10 # i , 2n2 in the n-BdB be
represented by an n-bit binary number, say i 5
an21an22 · · · a0. Node i is connected to four neighbor-
ing nodes 1i1, i2, i3, and i42 as follows:

i1 5 an22an23 · · · a1a0an21

1rotate the node i address one bit to the left2, 112

i2 5 an22an23 · · · a1a0an21

1rotate the node i address one bit to the left
and complement the bit2, 122

i3 5 a0an21an22 · · · a2a1
1rotate the node i address one bit to the right2,

132

i4 5 a0an21an22 · · · a2a1
1rotate the node i address one bit to the right
and complement the bit2. 142

Node i1 connection from node i in Eq. 112 is obtained by
rotation of the node i address to the left by one bit
position, which is equivalent to the perfect-shuffle 1PS2
operation. The node i2 connection from node i in Eq.
122 is obtained by rotation of the node i address to the
left and then complementing of the least-significant
bit, which is equivalent to a perfect-shuffle–exchange
operation. Similarly, the node i3 connection from
node i in Eq. 132 is obtained by a right-rotation
operation, which is equivalent to the inverse perfect-
shuffle 1IPS2 operation, and the node i4 connection
from node i is obtained by a right rotation and a
complement operation or an inverse perfect-shuffle–
exchange operation. In Fig. 1 a four-BdB network is
shown. It should be noted that the BdB network is
not modular 1i.e., we cannot build a four-BdB net-

Fig. 1. Four-BdB network with 16 nodes. Node addresses are
represented by binary numbers. A four-BdB network cannot be
built simply by connection of two three-BdB networks because the
BdB network is neither fully symmetrical nor modular.
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work simply by connecting two three-BdB networks,
as is the case with the hypercube network2, it is not
fully symmetric as the network size grows, and the
connectivity is not localized 1as is the case with the
mesh network2.
A node in the BdB network has four neighbors, as

defined in Eqs. 112–142. Thus the node degree of an
n-BdB network is always 4, which is constant and
independent of the network size. In actual implemen-
tation the node degreemeans the number of fan-ins or
fan-outs. Thus the fact that the node degree is
constant greatly eases the design of large-scale sys-
tems that the BdB network compared with the hyper-
cube-based one, whose node degree grows logarithmi-
cally with respect to the network size. As can be
seen from Eqs. 112–142, a node in the n-BdB network
can be reached from any other node in at most n hops.
Thus the diameter of the n-BdB network with 2n
nodes is n 1the diameter increases logarithmically
with respect to the total number of nodes in the
network2. Table 1 comparesmajor topological proper-
ties of the BdB network with several popular net-
works; the last column 1constant edge length2 indi-
cates whether the given topology can be realized with
edges 1links2 of the same length.

3. Design Methodology for Optical de Bruijn Networks

In this section we propose a design methodology for
the optical implementation of the BdB networks.
The presented methodology provides a partitionable
optical implementation; the BdB network is decom-
posed into a few primitive operations that can be
efficiently implemented, and then these operations
are combined together to realize the BdB network.
The design methodology assumes a 3-D optical-
interconnect model, which consists of three parts:
a two-dimensional 12-D2 source array, a 2-D detector
array, and an optical-interconnect module.27 The

Table 1. Characteristics of Various Network Topologies a

Network Nodes Diameter

Constant
Node
Degree

Constant
Edge

Lengthb

1-D Mesh n n 2 1 yes yes
2-D Mesh n2 21n 2 12 yes yes
3-D Mesh n3 31n 2 12 yes yes
Binary tree 2n 2 1 21n 2 12 yes no
Quaternary
hypertree

2n12n11 2 12 2n yes no

Pyramid 14n2 2 12@3 2 log n yes no
Butterfly 1n 1 122n 2n yes no
Hypercube 2n n no no
Cube-connected
cycle

n2n 2n yes no

Shuffle–
exchange

2n 2n 2 1 yes no

de Bruijn 2n n yes no

aAdapted from Quinn, Parallel Computing: Theory and Practice
1McGraw-Hill, NewYork, 19932.

bA network has a constant edge length if all the edges 1links2 can
be realized with the same length.
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optical-interconnect module receives an image from
the source array and generates the required optical
links to the detector array.

A. Decomposition of the de Bruijn Network into Primitive
Optical Operations

As shown in Eqs. 112–142, a BdB network can be
decomposed into four operations: a perfect shuffle
operation, a perfect shuffle–exchange operation, an
inverse perfect-shuffle operation, and an inverse per-
fect-shuffle–exchange operation. Because the model
for the 3-D optical interconnects takes an image of the
2-D source array and generates images on the 2-D
detector array, these operations and their correspond-
ing shuffle operations should be done on 2-D arrays.
There are two types of 2-D perfect shuffles28–35: the
2-D separable perfect shuffle 1SPS2 and the 2-D folded
perfect shuffle 1FPS2. In the 2-D SPS the rows and
the columns are shuffled independently, whereas in
the 2-D FPS the rows and the columns of the input are
obtained by folding a one-dimensional 11-D2 input
array. The mathematical relationship between the
2-D SPS and the 2-D FPS is shown in Fig. 36. In this
subsection we first summarize themathematical rela-
tionship between the 2-D SPS and the 2-D FPS
derived in Fig. 36, and then we extend it to derive the
relationship between the 2-D separable inverse per-
fect shuffle 1SIPS2 and the 2-D folded inverse perfect
shuffle 1FIPS2. Then we identify the most fundamen-
tal three operations required for the BdB network
construction.
Let us consider that N nodes 1N 5 2n and n is even2

are arranged in a 2n@2 3 2n@2 array 1or a 2-D plane2.
A binary address of a node can be represented by
1an21an22 · · · an@2, an@221 · · · a1a02, where an21a n22 · · ·
an@2 represents the row index and an@221 · · · a1a0 repre-
sents the column index. The row index and the
column index are separated by a comma. A 2-D FPS
1denoted as f2-D FPS2 can be expressed as

f2-D FPS: 1an21an22 · · · an@2, an@221 · · · a1a02

5 1an22 · · · an@221, an@222 · · · a1a0an212. 152

A2-D SPS 1denoted as f2-D SPS2 can be expressed as

f2-D SPS: 1an21an22 · · · an@2, an@221 · · · a1a02

5 1an22 · · · an@2an21, an@222 · · · a1a0an@2212. 162

As can be seen in Eqs. 152 and 162, a 2-D FPS is obtained
by rotation of the binary address as a whole to the left
by one bit position, and a 2-D SPS is obtained by
rotation to the left by one bit position the row address
and the column address separately.

1. Relationship between 2-D Folded Perfect Shuffle
and 2-D Separable Perfect Shuffle
From Eqs. 152 and 162, it can be seen that the 2-D FPS
is equivalent to 1i2 the exchange of the most-
significant bits 1MSB’s2 of the row address and the



column address and then 1ii2 performance of a 2-D
SPS, as follows36:

1i2ExchangeMSB’s in 1an21an22 · · ·an@2,an@221· · · a1a02

5 1an@221an22 · · · an @2, an21 · · · a1a02. 172

1ii2 f2-D SPS: 1an@221an22 · · · an@2, an21 · · · a1a02

5 1an22 · · · an @221, an@222 · · · a1a0an212. 182

If we divide the addresses of nodes placed in the
source array into four quadrants, Q0, Q1, Q2, and Q3,
the exchange of MSB’s is equivalent to the exchange
of Q1 and Q3, as depicted in Fig. 21a2.

2. Relationship between 2-D Folded Perfect
Shuffle–Exchange and 2-D Separable Perfect Shuffle
Now we derive the 2-D folded perfect shuffle–
exchange 1FPS-E2 1denoted as f2-D FPS-E2 from the 2-D
SPS. We define a 2-D FPS-E as

f2-D FPS-E: 1an21an22 · · · an@2, an@221 · · · a1a02

5 1an22 · · · an@221, an@222 · · · a1a0an212, 192

which is equivalent to 112 complementing the MSB of
the row address 1an212, 122 exchangingMSB’s of the row
address and the column address, and 132 performing a
2-D SPS on the resulting address. Because the
complement of the MSB in the row address corre-
sponds to the exchange of quadrants Q0 and Q3 and
the exchange of Q1 and Q2, steps 112 and 122 result in
the clockwise rotation of quadrants by one position, as
explained in Fig. 21b2.

3. Relationship between 2-D Folded Inverse Perfect
Shuffle and 2-D Separable Inverse Perfect Shuffle
We derive the mathematical relationship between the
2-D FIPS and the 2-D SIPS. We denote a 2-D FIPS

Fig. 2. In an n-bit 1n even2 address of a node, the most significant
n@2 bits represent the row index, and the rest represent the column
index. An x in the address represents a don’t-care bit.
1a2 The exchange of MSB’s in the row index and the column index is
equivalent to the exchange of quadrants Q1 and Q1. 1b2 The
complement of the MSB in the row index 1an212 1step 12, followed by
the exchange of MSB’s in the row index and the column index 1step
22, results in clockwise rotation of quadrants by one position.
as f2-D FIPS and defined it as

f2-D FIPS: 1an21an22 · · · an@2, an@221 · · · a1a02

5 1a0an21 · · · an@211, an@2 · · · a12. 1102

Similarly, we denote a 2-D SIPS as f2-D SIPS and define
it as

f2-D SIPS: 1an21an22 · · · an@2, an@221 · · · a1a02

5 1an@2an21 · · · an@211, a0, an@221 · · · a12. 1112

Equations 1102 and 1112 show that the 2-D FIPS is
equivalent to 112 performing a 2-D SIPS and 122 ex-
changing the MSB’s in the row address and the
column address of the resulting node address. The
latter is equivalent to the exchange of quadrants Q1
and Q3.

4. Relationship between 2-D Folded Inverse Perfect
Shuffle–Exchange and 2-D Separable Inverse
Perfect Shuffle
Finally, we derive the relationship between the 2-D
folded inverse perfect shuffle–exchange 1FIPS-E2 and
the 2-D SIPS. A 2-D FIPS-E 1denoted as f2-D FIPS-E2 is
defined as

f2-D FIPS-E: 1an21an22 · · · an@2, an@221 · · · a1a02

5 1a0an21 · · · an@211, an@2 · · · a12, 1122

which is equivalent to 112 performing the 2-D SIPS, 122
exchanging MSB’s in the row index and the column
index, and 132 complementing the MSB in the row
index of the resulting source assay. As shown in Fig.
21b2, steps 122 and 132 correspond to the clockwise
rotation of the quadrants by one position.
Figure 3 is a decomposition tree of the BdB net-

work that summarizes the relationships derived so
far. The optical BdB network based on the 3-D
optical-interconnect model consists of four opera-
tions, 2-D FPS, 2-D FPS-E, 2-D FIPS, and 2-
D FIPS-E operations. The 2-D FPS operation illus-
trated as the leftmost branch of the decomposition
tree is further divided into three operations in se-
quence: quadrant exchange 1QE2, followed by a
columnwise 1-D PS, followed by rowwise 1-D PS

Fig. 3. Decomposition of the 3-D optical BdB network. The most
fundamental three operations are identified to be 1-D PS 1or IPS2,
QE, and QR operations because the IPS operation can be obtained
from the PS operation by swapping inputs and outputs or vice
versa.
10 October 1995 @ Vol. 34, No. 29 @ APPLIED OPTICS 6717



operations. Similarly, 2-D FPS-E, 2-D FIPS, and
2-D FIPS-E operations are further divided into three
operations, as shown in Fig. 3. The IPS operation
can be obtained from the PS operation by swapping
inputs and outputs or vice versa. Thus we can
conclude that the most fundamental three operations
are QE, quadrant rotation 1QR2, and PS 1or IPS2 for
constructing the BdB network.

B. Construction of the Binary de Bruijn Network by Use of
the Primitive Operations

The construction of the BdB network by use of funda-
mental operations is the reverse process of the decom-
position, as shown in Fig. 4. At stage 1, four images
1fan-outs2 of the N 3 N input array are generated.
Four images undergo FPS, FPS-E, FIPS, and FIPS-E
operations, as indicated by branches 12, 22, 32, and 42,
respectively. For example, QE, columnwise 1-D PS,
and rowwise 1-D PS operations are performed in
sequence to accomplish FPS operation. Stage 5 com-
bines four images to give the BdB connection pattern
between the input array and the output array.

4. Feasibility Study for Optical Implementations

In this section we apply the presented design method-
ology to the implementation of the optical BdB net-
work, and then we analyze the proposed implementa-
tion to show the feasibility of the design methodology.
An optical implementation of each fundamental opera-
tion is first presented, and then the integration of
these fundamental operations is shown to construct
the optical BdB network. For cascadability we re-
strict beam angles entering and leaving each module
1an implementation of an operation2 to be normal to
the surface.

A. Implementation of Fundamental Optical Operations

1. Implementation of Quadrant-Exchange
Operation
Figure 5 shows the geometry for the implementation
of the QE operation. Deflecting optical components,
e.g., obtained by diffractive gratings or volume holo
grams, are fabricated both on the top and on the

Fig. 4. Construction of the BdB network by use of fundamental
operations. Fanouts indicated by 12, 22, 32, and 42 correspond to
FPS, FPS-E, FIPS, and FIPS-E operations, respectively. These
four operations are combined together to realize a BdB network.
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bottom of the substrate. Beams incident upon quad-
rants Q0 and Q2 pass through directly, whereas
beams on quadrant Q1 get deflected toward Q3, and
beams on Q3 get deflected toward Q1. Thus the net
effect of the QE operation becomes the swapping of
quadrants Q1 and Q3. The deflection-angle require-
ment can be calculated by use of Fig. 51b2. Because
Q1 and Q3 are swapped, the beam deflection occurs
along line XX–YY, and the angle 1u2 is equal to tan21

31L@Œ22@t4, where t is thickness of the substrate and L
is the size of the input array in a single dimension.
Suppose that we use diffractive gratings for beam
deflection. From the grating equation we can derive
the grating period 1p2 required for the QE operation on
the given light wavelength 1l2 as follows:

p 5
l

sin1tan21
L@Œ2
t 2

. 1132

We can also use two copies of an identical volume
hologram in implementing the QE operation because
holograms on the Q1 facet and on the Q3 facet can
have the same structure but with different orienta-
tions.

2. Implementation of Quadrant-Rotation Operation
Figure 6 illustrates an implementation of the QR
operation. We construct four volume holograms or
gratings on the facets of Q0, Q1, Q2, and Q3 for the
required beam deflections. As shown in Fig. 61b2, the
deflection angle 1u2 is equal to tan211L@2t2, where L is
the 1-D size of the input array and t is the thickness of
the substrate. All four holograms will have identical
structure but with different orientations. The holo-
gram on Q0 deflects incident beams along the 1x
direction, Q1 along the 2y direction, Q2 along the 2x
direction, and Q3 along the 1y direction.

3. Implementation of Perfect-Shuffle Operation
Several implementations of permutation intercon-
nects, including the PS operation, have been demon-
strated by use of holographic optical elements,37,38
diffractive lenslets,39 and refractive lenslets.40 We

Fig. 5. Optical implementation of the QE operation: 1a2 a 3-D
view and 1b2 a cross-sectional view along the XX–YY.



can easily extend such methods to implement 1-D
rowwise 1or columwise2 PS operations.
Figure 7 shows a rowwise 1or columnwise2 1-D PS

implementation on eight rows 1or columns2. Let d be
the node size along a single dimension, t be the
thickness of the substrate, and ui be the deflected
angle at node i. For a k-node 1-D PS 1k is a power
of two2, ui 5 tan211id@t2 if i # k@2 or ui 5
tan21531i 2 k 1 12d4@t6 if i . k@2. As discussed above,
these angular requirements determine the period of
the grating when we use diffractive gratings for the
beam deflection. We should note that the 1-D PS
operation on k nodes requires k@2 distinct deflecting
components because deflection angles of the first k@2
nodes are symmetric to those of the remaining k@2
nodes. Also, an implementation of the 1-D IPS opera-
tion can be easily achieved by swapping inputs and
outputs of the 1-D PS implementation in Fig. 7.

B. Integration of Fundamental Operations to Construct the
Optical Binary de Bruijn Network

As shown in Fig. 4, we need a 1 3 4 fan-out element 1a
4 3 1 fan-in element as well2 to construct the BdB
network in addition to the implementations of funda-
mental operations discussed so far.

1. Implementation of 1 3 4 Fan-out@Fan-In
Elements
Several implementations of fan-out elements have
been demonstrated.41–44 We discuss geometry re-

Fig. 6. Optical implementation of the QR operation: 1a2 a 3-D
view and 1b2 a side view.

Fig. 7. Optical implementation of the columnwise 1or rowwise2
1-D PS operation on eight columns 1or eight rows2. If we swap
inputs and outputs, it can perform the columnwise 1or rowwise2 1-D
inverse PS operation.
quirements of fan-out elements to implement the BdB
network. Figure 8 illustrates an implementation of
the fan-out element that uses a multiplexed volume
hologram. Using the geometry given in Fig. 81b2, we
can see that the deflection angle of each beam is equal
to tan213L@1Œ2t24. A 4 3 1 fan-in element can be
achieved by swapping inputs and outputs of the 4 3 1
fan-out element.

2. Construction of the Binary de Bruijn Network
The construction of the BdB network by use of
implementations of fundamental operations is the
process of integration, as shown in Fig. 4. Figure 9
shows a 3-D view of the constructed BdB network
obtained by implementations of the fundamental
operations presented in Subsection 4A. Beams gen-

Fig. 8. Optical implementation of the 1 3 4 fan-out element 1or
the 4 3 1 fan-in element if we swap the input and the output2: 1a2
a 3-D view and 1b2 a cross-sectional view along line XX–YY.

Fig. 9. Integration of fundamental optical operations to correct
the BdB network. Fanouts indicated by 12, 22, 32, and 42 corre-
spond to FPS, FPS-E, FIPS, and FIPS-E operations, respectively.
10 October 1995 @ Vol. 34, No. 29 @ APPLIED OPTICS 6719



erated from an N 3 N laser diode array are first split
into four images by the 1 3 4 fan-out element. Four
images of the input array will undergo FPS, FPS-E,
FIPS, and FIPS-E operations, respectively. Each
operation is achieved by performance of a sequence of
three fundamental operations. At the last stage a
fan-in element combines four images, which result in
the BdB connections between the input and the
output arrays.
An index-matching fluid might be used between

stages to ensure that the traveling light is not dis-
turbed optically. Also, we can use the space-division
multiplexing technique with multiple detectors per
node to avoid the fan-in problem45 at the last stage of
the BdB network integration. An incoming signal
distinction scheme, which encodes spatial positions of
the sources at the nodes, would allow us to use an
affordable number of detectors per node.46

C. Analysis of the Proposed Implementation

1. Integration Density
The optical implementation of the network cannot be
made arbitrarily small because of the limitation in
the achievable deflection angle, resulting from the
limited resolution of the diffractive grating. In addi-
tion, the integration density is limited owing to
diffraction spreading. Both constraints must be ful-
filled at the same time.
We use Gaussian beam optics47 to analyze the

integration density limited by diffraction spreading.
In Gaussian beam optics the dependency of the beam
radius on the beam traveling distance is governed by

w1z2 5 w031 1 1
lz

pw0
22
2

4
1@2

, 1142

where z is the distance propagated, l is the wave-
length of the light,w0 is the original beam radius, and
w1z2 is the beam radius after the beam propagates a
distance z. For the BdB network implementation
depicted in Fig. 9, we calculate the longest distance
that beams may propagate. Assume that L is the
size of the input array along a single dimension and
that t is the thickness of each substrate. The longest
beam traveling distance in the entire BdB network is
equivalent to the accumulation of the longest path in
each module. From Fig. 81b2 the fan-out and fan-in
modules make the beam travel a distance 23t2 1 1L2@
2241@2. From Figs. 5, 6, and 7 we can see that the QE,
QR, and PS operations require the longest distance,
3t2 1 1L2@2241@2, 3t2 1 1L2@4241@2, and 3t2 1 1L2@4241@2, respec-
tively. Thus the longest distance 1zmax2 in the BdB
network implementation that a beam may propagate
is equal to

zmax 5 31t2 1
L2

2 2
1@2

1 21t2 1
L2

4 2
1@2

. 1152

Therefore, from Eq. 1142 the source beam radius w0
will expand tow1zmax2 on the detector side.
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We calculate the achievable integration density on
the input array size 1L 3 L2 to be 10 mm 3 10 mm.
Suppose that the thickness 1t2 is 7 mm, the source
beam size is 100 µm in diameter, and the source light
wavelength is 785 nm. The maximum deflection
angle required in realizing the optical BdB network
occurs in the implementation of the QE operation, as
discussed in Subsection 4A. From Eq. 1132 the high-
est grating resolution for the given input array size is
276 nm if a four-level grating is used. Such resolu-
tion can be achieved with current electron-beam
writing technology.48 Now we consider the effect of
diffractive spreading on the integration density. The
longest distance 1zmax2 becomes approximately 48 mm,
resulting in the beam size of 157 µm in diameter on
the detector array. With this beam size we can
integrate approximately 4096 sources 1detectors2 in a
10 mm 3 10 mm input 1detector2 array size. Thus a
12-BdB network 14096 nodes2 can be easily integrated.
The total area required for the 12-BdB network is 20
mm 3 20 mm because of to the fan-out module.

2. Implementation Complexity
As discussed in Subsection 4.A, an implementation of
theN-node BdB network requires implementations of
QE, QR, and PS operations, in addition to the 1 3 4
fan-out@fan-in elements. The number of distinct op-
tical deflecting components in implementing the QE,
QR, and fan-out@fan-in elements is independent of
the network size N. However, the PS operation
requires ŒN@2 distinct deflecting components.

3. Signal Skew
The longest path in the proposed BdB implementa-
tion is derived in Eq. 1152. The shortest path occurs if
beams propagate without any deflection in the QE
and the PS operations. Thus the shortest path 1zmin2
is equal to

zmin 5 21t2 1
L2

2 2
1@2

1 2t 1 1t2 1
L2

4 2
1@2

. 1162

With the same sizes of L and t used in the previous
calculation the shortest distance becomes approxi-
mately 43mm. Thus the inherent signal skew owing
to the path difference in the proposed implementation
is no greater than 167 ps.

4. Power Efficiency
In this analysis we assume the use of index-matching
fluid between stages and the use of antireflection
coating on each surface for enhancing power efficiency.
The fan-out@fan-in module that uses a multiplexed
volume hologram can be made with a transmission
power efficiency as high as 90%.43 The QE, QR, and
PS operations require only beam-deflecting compo-
nents. With volume holograms a deflection effi-
ciency of 95% can easily be achieved.44 The transmis-
sion power efficiency of each operation is 90% because
a pair of holograms is used along the beam path.
Thus, overall power efficiency of the proposed imple-
mentation can be as high as 48%.



5. Cascadability
Suppose that we use volume holograms in implement-
ing each operation. The proposed optical implemen-
tation uses a pair of identical volume holograms along
the beam path for each operation. This configura-
tion tolerates the dependency of the beam angles that
leave the module on the instability of the light wave-
length. In other words, the beam will leave the
module normal to the surface regardless of the light
wavelength as long as the beams are incident normal
to the surface. Thus cascadability can be well main-
tained by use of a pair of identical holograms.

5. Conclusions

The binary de Bruijn topology as an interconnection
network for parallel computers has been studied
recently as an alternative to the hypercube-based or
the mesh-based interconnection network. The bi-
nary de Bruijn network has the node degree of a
two-dimensional mesh and the diameter of a hyper-
cube. The de Bruijn network retains most of the
desired properties of the hypercube network such as a
small diameter, on easy message-routing scheme,
fault tolerance, and efficient mapping of many scien-
tific and engineering problems. In addition, the de
Bruijn network has a constant node degree indepen-
dent of the network size, which is very desirable in
constructing large-scale systems. Unfortunately, the
de Bruijn network is not fully symmetric, and the
connection patterns are not localized. This makes
its VLSI implementation nontrivial, though not impos-
sible. However, free-space optics, owing to its flexibil-
ity and three-dimensional connectivity, can easily
realize the nonsymmetric global connections.
In this paper we have proposed a design methodol-

ogy for the optical implementation of the de Bruijn
network. The methodology first decomposes the bi-
nary de Bruijn network into a few basic operations
that can be efficiently implemented. Then it inte-
grates these basic operations to construct the network.
To show the feasibility of the design methodology, we
proposed an optical implementation of the binary de
Bruijn network. The developed design methodology
is good for bulk optics, holographic optics, or planar
optics because the methodology does not assume any
specific optical technologies. A 4096-node binary de
Bruijn network was analyzed and found to be feasible
for optical implementations. Such implementation
demonstrates good feasibility by showing a reason-
able optical power efficiency and a volume size ca-
pable of fitting within the case of a massively parallel
computer.

This research was supported by National Science
Foundation grant MIP 9310082.
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