
IEEE TRANSACTIONS ON COMPUTERS 1

Resilient and Power-Efficient Multi-Function
Channel Buffers in Network-on-Chip

Architectures
Dominic DiTomaso, Student Member, IEEE, Avinash Kodi, Senior Member, IEEE,

Ahmed Louri, Fellow, IEEE, and Razvan Bunescu

Abstract—Network-on-Chips (NoCs) are quickly becoming the standard communication paradigm for the growing number of
cores on the chip. While NoCs can deliver sufficient bandwidth and enhance scalability, NoCs suffer from high power consumption
due to the router microarchitecture and communication channels that facilitate inter-core communication. As technology keeps
scaling down in the nanometer regime, unpredictable device behavior due to aging, infant mortality, design defects, soft errors,
aggressive design, and process-voltage-temperature variations, will increase and will result in a significant increase in faults
(both permanent and transient) and hardware failures. In this paper, we propose QORE - a fault tolerant NoC architecture with
Multi-Function Channel (MFC) buffers. The use of MFC buffers and their associated control (link and fault controllers) enhance
fault-tolerance by allowing the NoC to dynamically adapt to faults at the link level and reverse propagation direction to avoid
faulty links. Additionally, MFC buffers reduce router power and improve performance by eliminating in-router buffering. We utilize
a machine learning technique in our link controllers to predict the direction of traffic flow in order to more efficiently reverse
links. Our simulation results using real benchmarks and synthetic traffic mixes show that QORE improves speedup by 1.3× and
throughput by 2.3× when compared to state-of-the art fault tolerant NoCs designs such as Ariadne and Vicis. Moreover, using
Synopsys Design Compiler, we also show that network power in QORE is reduced by 21% with minimal control overhead.

Index Terms—Network-on-Chips, Fault tolerance, Power-efficiency

F

1 INTRODUCTION

As transistor technology scales down to the sub-nanometer
region, integrated circuit (IC) designs are moving to-
wards chip multiprocessors (CMPs), integrating hundreds
of smaller processing elements or cores on a single chip.
As the number of cores continue to scale and conventional
on-chip bus-based communications approach their limits,
architects were driven to consider other scalable communi-
cation strategies. Network-on-Chips (NoCs) have emerged
as the de facto communication paradigm by offering scala-
bility through a modular design [1], [2]. In NoCs, segments
of links are connected via routers in order to overcome
global wire delays and scalability requirements. However,
the combination of links and routers incur a power and
area expense which adversely affects NoC performance.
Extensive power optimization techniques have been used to
mitigate the NoC power consumption. The NoC of Intel’s
80-core TeraFlops chip [3] consumes 28% of the total tile
power using simple cores, whereas the NoC in the more
recent Intel 48-core SCC [4] consumes 10% of the tile
power using regular cores. Power optimizations of the NoC
fabric is a critical piece of the puzzle to sustain and continue
the drastic growth in CMP performance.

A typical NoC hardware consists of routers and com-
munication channels connecting the routers. The router
is comprised of input/output ports, buffers, routing logic,
and a crossbar connecting input ports to output ports for

packet routing. Research has shown that router buffers are
responsible for 46% of router power [5] and 30% of router
area [6]. This has motivated architects to implement buffer
optimization techniques such as elastic buffering [7], [8],
[9] and bufferless routing [10], [11], [12]. By completely
eliminating buffers and implementing bufferless routing,
recent work has reduced the average network energy by
40% [10]. Buffers have been moved from the router to the
channels by replacing repeaters on the channel with either
flip-flops called elastic buffers [8] or tri-state repeaters
called channel buffers [9]. These channel buffers can store
packets when the register buffers are congested or propagate
data forward when necessary, thereby mitigating power and
area penalties associated with router buffers.

Since the buffers have been moved to the channels,
hard errors in the channel buffers can cause complete fail-
ure, impeding communication between routers. Researchers
have been tackling channel failure in NoCs [13], [14],
[15], [16], [17], [18], [19], [20]. Recently, the fault tol-
erant Ariadne network [13] overcame channel faults by
reconfiguring packet routing to move around failures. Using
up*/down* routing and a series of flag broadcasts, the
two unidirectional links between routers were dynamically
assigned as up or down to create a tree network that avoid
faulty channels. Another fault tolerant NoC called Vicis
[14] routed around faults and placed turn restrictions at
routers to avoid deadlocks. The BulletProof architecture
[21] concentrates on the router (not the channels) and
provides efficient fault tolerance schemes for routers to

IEEE TRANSACTIONS ON COMPUTERS 2

overcome transient and permanent faults.
With the increasing number of cores, NoCs must manage

the communication demands, especially when faults are
present. Since NoCs are designed to handle peak traffic
loads, many communication channels can go under-utilized
when network load is high or the workload is unbalanced.
Recent research on NoC performance has tackled above
mentioned problems using techniques such as reversibility
or coding schemes [22], [23], [24], [25], [26], [27]. Hesse
et al. propose a bandwidth-adaptive router (BAR) that
aims to take advantage of these under-utilized links with
bidirectional, adaptive channels [23]. These bidirectional
channels adapt channel bandwidth at a fine-granularity
according to network traffic demands. Research has shown
that channel reversibility can achieve higher throughput and
lower average packet latency in NoCs.

In this paper, we propose QORE - a fault tolerant
network-on-chip architecture with power-efficient Multi-
Function Channel (MFC) buffers. QORE can lower power
with channel buffers, improve performance through re-
versible links, and improve fault tolerance through redun-
dant links. The key component in QORE are the MFCs
which have multiple functionalities: on-demand data stor-
age, on-demand forward data propagation, and backward
data propagation. On-demand data storage enables com-
munication channels to act as buffers and store data when
the network load is low and function as repeaters when
the network load is high. Therefore, MFCs have five pos-
sible states: forward propagation, backward propagation,
forward buffer, backward buffer, and flush. Using multiple
links with the MFCs and the associated control blocks,
QORE can improve both performance and fault tolerance.
The multiple links between routers can provide data with
redundant paths in case of faults. Increasing the number of
links between routers can improve fault tolerance; however,
the bandwidth of the links decreases. Therefore, there is
a trade-off between fault tolerance and performance as
the number of links varies. We evaluate this trade-off by
varying the number of links from two to eight. Additionally,
we use machine learning techniques to accurately determine
how to reverse the various links in QORE. The proposed
QORE architecture attempts to address three issues of
power, performance and fault-tolerance in a cohesive man-
ner. The major contributions of this work over our prior
work [28] include:

• Multi-Function Channel (MFC) Buffers: We design
channel buffers that can dynamically function as (1)
forward repeaters, (2) backward repeaters, (3) forward
buffers, and (4) backward buffers. This enables sig-
nificant power reduction with no router buffers while
enabling circuits to both improve performance and
reliability. We evaluate the effect of channel buffers in
terms of power compared to designs with conventional
register buffers.

• Direction of Traffic Prediction: We propose to use a
machine learning technique to predict the traffic flow
on our links which can be used for more accurate link
reversing. Experimental results show that a decision

0

20

40

60

80

100

120

140

Crossbar Buffer Channel
Buffer

P
o

w
e
r

(m
W

)

(a) Dynamic Power (b) Leakage Power

0

5

10

15

20

Crossbar Buffer Channel
Buffer

P
o

w
e
r

(µ
W

)

0

10

20

30

40

50

0 50 100

L
in

k
 F

a
u

lt
s

Gate Failures

Rev. Channel Buf.

Channel Buf.

Conv. Links

(c) Link Failures

0

1

2

3

4

5

6

in
o

u
t

in
o

u
t

in
o

u
t

in
o

u
t

in
o

u
t

in
o

u
t

in
o

u
t

in
o

u
t

+x -x +y -y +x -x +y -y

C
h

a
n

n
e
l

U
ti

li
z
a
ti

o
n

 (
%

)

(d) Channel Utilization
FMM blackscholes

Fig. 1: (a-b) Dynamic and Leakage power of buffers, (c)
link failures with and without channel buffers, and (d) link
utilization of a router.

tree predicts the direction of the traffic with higher
accuracy on average than a predictor based on thresh-
olded link utilization.

• QORE with Varying Links: We vary the number of
inter-router links in QORE from two to four to eight in
order to study the effect on the network performance
and fault-tolerance trade-off.

2 MOTIVATION
In this paper, we focus on two important concerns in
NoCs while also maintaining network performance: high
power dissipation and declining reliability. As previously
mentioned, buffers consume a major portion of the router
power. This has been the key concern that has motivated
researchers to develop novel ideas such as bufferless net-
works [10], [11], dynamic VC allocation [29], and elastic
or channel buffers [8], [9]. Buffers consume significant
dynamic power when traffic load is high as well as static
power due to leakage. Figure 1(a-b) shows the total power
breakdown (in mW) for a 5x5 router from Synopsys Design
Compiler using the TSMC-LPBWP 40 nm technology
library with a nominal supply voltage of 1.0 V and an oper-
ating frequency of 2 GHz. The dynamic power breakdown
in Figure 1(a) shows that buffers consume 33% of router
power (buffers+crossbar). With the same amount of buffer
space, channel buffers can lower dynamic power by 90%.
Figure 1(b) shows the leakage power breakdown of the
router components in µW . As shown, the leakage power of
the buffers consume 68% of the total router leakage power
(buffers+crossbar). Channel buffers dissipate more leakage
power than the register buffers; however, this increase is
compensated by the very low dynamic power. Therefore,
one possible alternative to the high power register buffers
in NoCs are channel buffers.

The next major concern in NoCs is reliability. The
extreme shrinking of transistor feature sizes has made NoCs

IEEE TRANSACTIONS ON COMPUTERS 3

vulnerable to failures and data corruption. To examine
the number of link faults in an NoC, a fault model was
used which was similar to the model used in [13] in
which a router design consists of 20,413 gates. Faults
were injected randomly and weighted by the size of the
gates. Therefore, gates with a larger number of transistors
have a higher probability of failing. Figure 1(c) shows the
number of faulty links caused by gate failures for reversible
channel buffers (explained in Section 3), non-reversible
channel buffers, and conventional links without channel
buffers. Non-reversible channel buffers are less reliable than
conventional links due to the extra two transistors added to
each link. Reversible channel buffers are even less reliable
because of the eight additional transistors as explained in
Section 4.1. Therefore, robust fault tolerant techniques are
even more critical when using channel buffers.

In addition to power and fault tolerance, high network
performance is another concern in NoCs. Looking at a NoC
router, the amount of traffic entering and leaving the router
will be similar when averaged across the whole application.
However, due to dynamic traffic patterns in NoC applica-
tions, there will be period of time where the majority of
traffic will be either entering or leaving the router. This
unbalanced traffic can cause certain links to become under-
utilized during certain epochs. Figure 1(d) shows the link
utilization of a router in a 64 core network for two real
applications. Each side of the router (+x, -x, +y, and -y)
has a link going in and out. For the applications FMM
and blackscholes [30], [31], many links are under-utilized,
thereby, wasting bandwidth. For example, on the +x side
of the router, the ”in” channel utilization is approximately
double the ”out” channel utilization. On other links, the
”in” utilization is much lower than the ”out” utilization.
Using reversibility, links can change direction providing
bandwidth where needed. Channel buffers can reduce dy-
namic power while marginally increasing leakage power;
and reversible channel buffers could maximize resource
utilization and improve execution time, but would need
fault tolerant techniques to overcome the higher fault rates
observed in channel buffers.

3 MULTI-FUNCTION CHANNEL BUFFERS

In this section, we will explain the circuit and imple-
mentation details of our proposed MFC buffers. Channel
buffers have been shown to eliminate router buffer power
by moving storage to the channels with the side benefit
of reducing the area overhead with marginal performance
penalty [9], [8]. In this work, we uniquely modify the previ-
ously proposed channel buffers to function as bidirectional
channel buffers with similar advantages of reduced power
while providing on-demand storage. Figure 2(a) shows
two physical channels with four channel buffer stages per
channel. The inset shows a conventional channel buffer
which uses four transistors and a release (rel) control line
to store or propagate packets in one direction. The working
of channel buffers to either store or propagate packets
based on router congestion and receive signals via a control

rel
rel

rev

rev
rev

rev
rev’

rev’

rev’

rev’

Conventional

channel buffer
Reversible channel buffer

(a) (b)

rel rev Function

0 0 Forward

0 1 Backward

1 0 Store

1 1 Store

rel=0

rev=0

rev=0 rev=0

rev=0

rev’=1

rev’=1

rev’=1

rev’=1

Forward Propagation (rel=0, rev=0)

off

off

rev=1

rev=1 rev=1

rev=1
rev’=0

rev’=0

rev’=0

rev’=0

Backward Propagation (rel=0, rev=1)

off

off

(c)

rel=0

rel=1

rev=0

rev=0 rev=0

rev=0

rev’=1

rev’=1

rev’=1

rev’=1

Forward Buffer (rel=1, rev=0)

off

off

rev=1

rev=1 rev=1

rev=1
rev’=0

rev’=0

rev’=0

rev’=0

Backward Buffer (rel=1, rev=1)

off

off

rel=1

off

off

off

off

Fig. 2: (a) Conventional channel buffer, (b) our reversible
channel buffer, and (c) storage and propagation for both
forward and backward links.

block has been discussed previously [9]. The proposed
reversible channel buffer circuit is shown in Figure 2(b).
By adding eight transistors to act as four transmission
gates, the channel buffers can propagate packets in both
directions in addition to storage. The four transmission
gates are controlled by the reverse signal (rev) sent from
the router. A table showing all possible functions of the
reversible channel buffer based on the inputs rel and rev
are also shown in Figure 2(b). Figure 2(c) shows various
combinations of reversible channel buffer functionalities;
either as on-demand storage or repeater, and with data
propagating either in forward or backward directions.

• Forward Buffer: When rel=1 and rev=0 data can be
stored in the forward direction (left to right). The data
is cut off from Vdd and GND and the data is stored
on the capacitance of the transistors.

• Backward Buffer: When rel=1 and rev=1 data can
be stored in the backward direction (right to left).
Again, the data is cut off from Vdd and GND and
the data is stored on the capacitance of the transistors.

• Forward Propagation: When rel=0 and rev=0 data
can propagate forward. The transistors connected to

IEEE TRANSACTIONS ON COMPUTERS 4

Vdd and GND are enabled to allow propagation and
the forward propagation transmission gates are also
enabled.

• Backward Propagation: When rel=0 and rev=1 data
can propagate backward. Again, the transistors con-
nected to Vdd and GND are enabled to allow propa-
gation and now the backward propagation transmission
gates are enabled.

We show four functions of our MFC for high network
loads (forward and backward buffers) and for low net-
work loads (forward and backward propagation). When
our MFCs act as buffers, the capacitance of the transistors
must be large enough to store the data for many cycles.
We determined the discharge time of a channel buffer
implemented with 130 nm transistors using the Virtuoso
Analog Design Environment from the Cadence tools. The
discharge time of the channel buffers is in the magnitude of
milliseconds which corresponds to millions of clock cycles
with a 1 GHz clock.

4 QORE ARCHITECTURE
In this section, we will describe the QORE architecture
including reversibility, the design and operation of the fault
tolerant network, the details of the fault and link con-
trollers, the router microarchitecture, and proof of deadlock-
freedom.

4.1 MFC without Faults
Conventional routers, that use virtual channels (VCs) and
fixed connections between routers, can become a bottleneck
if there is high traffic in any direction. To reduce the
buffering bottleneck, QORE uses our reversible channel
buffers to dynamically allocate buffers to adapt to traffic
patterns. Figure 3 shows the links between routers in
QORE. In order to have the same amount of buffering as a
conventional 4 VC/input router, we place a set of N=4 links
between routers each consisting of two channel buffer lines.
Each link consists of two channel buffer lines to alleviate
HoL blocking [7]. Additionally, since QORE has more
links between routers than the two links in conventional
routers, we have reduced the bandwidth of our links for
a fair comparison, as explained in the evaluation section.
Therefore, the wire area overhead of QORE is equal to the
conventional baseline networks. However, a designer can
choose N to be a different number depending on system
requirements. Each router link is reversible, allowing com-
munication in both directions. However, the two channel
buffer lines in each link will always be directed the same
way. This will ensure that at any time, a packet will have at
least two VCs to choose from, which in turn will alleviate
HoL blocking. In QORE, when there is high traffic in one
direction, the links can change direction according to the
traffic load, thereby increasing buffer space. For example,
in Figure 3, when there is high eastbound traffic, three
links (a-c) can be allocated to the east direction while one
link (d) remains in the west direction. The three east links
can, therefore, use the under-utilized westbound buffers and

Xbar

2 Channel Buffer

Lines each with

4 stages

-x

Xbar

N=4 Router

Links

East

West

Router 1 Router 2

a

b

c

d

Low Congestion More Buffers for East

Fig. 3: QORE’s four reversible router links each consisting
of two channel buffer lines.

provide more buffering for eastbound traffic. This additional
buffering will relieve congestion at router 2 as well as
router 1 and other upstream routers. Meanwhile, the one
west link can still provide buffering for westbound traffic.
As a result, both eastbound and westbound traffic can
have ample buffering, thereby, decreasing packet latency.
Therefore, reversing router links in QORE can reduce traffic
bottlenecks caused by under-utilized links and buffers.

Determining which direction to allocate links is critical in
QORE. Network traffic is measured using hardware coun-
ters to store the number of link traversals in each direction.
A two-stage controller, which is detailed more in Section
4.3, is used to allocate links to the appropriate direction
based on traffic demands. The first stage (link controller
(LC)) of the controller uses the counters to determine which
direction has the highest traffic called as the ”majority”.
The second stage (fault controller (FC)) will assign all but
one link to the majority direction or allocate equal links
to both directions if the link utilizations are similar. In the
example in Figure 3, each time a flit traverses links (a-d),
both routers 1 and 2 will increment their counters. Since
there is high eastbound traffic in this example, the link
controllers will determine that the majority of the traffic is
moving from west to east. At this point, the fault controllers
in both router 1 and 2 will allocate the first three links (a-
c) to the east and allocate link (d) to the west. If there are
packets currently stored in the channel buffers when the
reversing occurs, then these packets will be flushed out to
escape VCs inside the downstream router.

4.2 MFC with Faults
QORE uses MFC buffers to overcome hard faults in the
network. When a link in one direction is faulty, another
link can reverse its direction to overcome this fault. Figure
4 shows the overall layout of the QORE network for
16 routers and can be easily scaled to large numbers.
The routers are connected to each other in a grid-like
fashion similar to a mesh network. However, instead of
the two unidirectional links between routers as in a mesh,
QORE has four, narrower reversible links between each
router. Again, each reversible link consists of two channel
buffer lines. Also, the links are narrower than the baseline

IEEE TRANSACTIONS ON COMPUTERS 5

12

FC

13

LC

FC

14

FC

15

LC

FC

8

FC

9

LC

FC

10

FC

11

LC

FC

4

FC

5

LC

FC

6

FC

7

LC

FC

0

FC

1

LC

FC

2

FC

3

LC

FC

LC

FC

Router

Link

Controller

Fault

Controller

Reversible

Link

 Backup

Ring

LC LC

LC LC

LC LC

LC LC a
+x

-x

+y

-y

b
c
d

Fig. 4: Layout of QORE showing links configured to an
arbitrary traffic pattern.

links as explained in the Evaluation section so there is
no area overhead. The additional links create redundant
paths between routers to improve both performance and
reliability while avoiding HoL blocking. The link setup
shown in Figure 4 is arbitrary; each link can reverse in
either direction depending on traffic demands. QORE also
has a backup ring network [32] which is used when there
are a large number of faults that potentially could isolate
healthy routers. Each router has a link controller (LC) and a
fault controller (FC) (Detailed in Section 4.3) that analyze
link utilization and determine which links to reverse.

Each set of four links can handle up to three faulty links
before using the backup ring. If a fault is detected in any of
the links of a set, then the remaining non-faulty links will
point in the directions specified by the LC and FC. For
example, suppose the four links on the +x side of router 0
are initially setup as shown in Figure 4 with two links facing
east (E) and two links facing west (W). If faults are detected
in both links a and b, then links c and d can overcome these
faults by setting their directions to E and W, respectively.
This will maintain connectivity between routers 0 and 1 so
that packets can still be transmitted to both sides. If three
of the four links fail then the fourth link can be used to
communicate both ways since it is reversible. However, if
all four links between two routers fail, then the backup ring
network must be used. The backup ring network consists
of two unidirectional rings, so that packets can traverse the
shortest path, either clockwise or counterclockwise, to their
destination. For example, if all four +x links of router 0 fail
and the destination is router 5 then the packet will be routed
on the ring network from router 0 to router 1, and so on up
to router 5. Once a packet is on the ring network, it must
stay on the ring network until it reaches its destination in
order to avoid livelocks and deadlocks.

4.3 Link and Fault Controllers

In order to keep track of the status of each link, Link Status
Tables (LSTs) are implemented in hardware. There are four

LSTs per router in QORE; one for each set of links. The
set of links on the right-side of a router are labelled as the
+x links, links on the left are labelled -x links, etc. Each set
of links has a LST containing information about the links.
Each table has as many entries as links in each direction.
In this paper, there are always 4 links in each direction.
Hence, n+x = n−x = n+y = n−y = 4 and each table has
four entries.

Each link in a specified direction has a unique identifier
stored in the Link Address field. Whether the link is
facing in towards the router or out away from the router
is specified in the Direction field. This field will be
read by the routing computation (RC) to determine valid
routing paths and will be set up by the algorithm in the
FC. The Flit Count data field stores the number of flit
traversals on the link within the reconfiguration window,
Rw. These counters are read by the LC to determine
traffic demands. Each counter is incremented every time
its corresponding link receives a flit and is decremented
every time its corresponding link sends a flit. The Faulty
data field stores whether or not the link is useable. This
data field is read by the FC and RC. The field is set when
its corresponding link detects a fault. Detection of faults
can be done by implementing BIST (Built-In System Test)
[15], [33]; however, fault detection is beyond the scope of
this work. Finally, each table stores the total number of
working links which is set each time a fault is detected.

The LC and FC are split into four independent blocks
corresponding to each direction (+x, -x, etc.). The inputs of
the LCs are the direction fields for each of the 4 router links.
The output of the LCs indicates which direction (N=north,
E=east, S=south, W=west, or B=both) the majority of the
flits were traveling during the last Rw cycles. If the traffic
was roughly equal (within ∆ where ∆=5% of total flit
traversals in this paper) then a B is output and an equal
number of links will face in each direction. The LC output
gives a good measure on the traffic demand so that link
bandwidth can be properly allocated. The simple algorithm
to determine the majority of the +x (px) links is shown in
Algorithm 1. We will show how to improve this algorithm
using machine learning in Section 4.4. At the end of Rw,
the LCs total up the counts from their corresponding LSTs.
Since the counters are incremented when a flit is received
and decremented otherwise, a positive total would indicate
the majority of the traffic is moving ”West” for the set of
+x links and a negative total would indicate more ”East”
Traffic. At the end, the counts in the LSTs are cleared for
next Rw. The majority output is then fed to the FCs.

The inputs for the FC are the majority signal, the
total number of good links, and the fault status of each
link. The FC determines the new directions for each
link by outputting their link address and updating the
direction field in the LST. The algorithm to determine
the directions for the +x set of links is shown in Algo-
rithm 1. If the LC determines that the majority is W ,
then the FC will assign a majority of the links to the
W direction. The FC also tries to maintain connectivity
by assigning at least one link to the opposite direction

IEEE TRANSACTIONS ON COMPUTERS 6

Algorithm 1 Link Controller and Fault Controller Pseu-
docode for +x (px) Links
// Link Controller
if(Enable){

for(all links 0 to n+x − 1)
total count = total count + pxLnk[i].count;

if(total count � 0)
pxMajority = West;

else if(total count � 0)
pxMajority = East;

else
pxMajority = Both;

clear all counts();
}
// Fault Controller
if(Majority of traffic is West){

if(pxLnk.totalGood == 1)
assign one link(West);

else{
assign one link(East);
assign remaining links(West);

}
} else if(Majority of traffic is East){

// Same as above except interchange West and East
} else if(Traffic is similar in both directions){

assign half links(West);
assign half links(East);

}

of the majority when possible in the assign one link
function. The remaining links are assigned to the majority
direction in the assign remaining links function. Both
assign one link and assign remaining links func-
tions are optimized so that the number of links that change
directions is minimized. Therefore, with four links between
routers, after FC at most two links will change direction.
This minimizes the number of flits that must be flushed.
When there is only one non-faulty link, then the FC must
break connectivity and assign the link to the majority direc-
tion. However, this will cause starvation as packets cannot
be sent in one direction. We resolve this by allocating
60% of Rw to the majority direction and reserve 40%
of Rw to the opposite direction. We chose 60% because
our simulation results showed that this value gave the best
average performance over all the benchmarks.

4.4 Improving Link Controllers with ML
In order to improve our link controllers, we propose to
use machine learning (ML) techniques to predict the traffic
flow on the links. Our baseline link controllers only use
link utilization from the previous time window to pre-
dict the traffic for the next time window. For example,
if the majority of traffic was going east during the last
reconfiguration window then the links are adjusted so that
more bandwidth is given to the east direction for the
next reconfiguration window. However, with dynamic traffic
patterns the direction of the traffic may drastically change
from one reconfiguration window to the next. If the links
are incorrectly reversed for the current traffic pattern then
a performance penalty will occur. Therefore, we use ML
techniques to improve the accuracy of our LCs.

Feature 1

Feature 2 Feature 3 Feature 4

W B

W=WEST
E=EAST
B=BOTH

Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10

W E B E W E B E E E W E

Fig. 5: An example decision tree.

Machine learning algorithms have been used in net-
work/CMP applications for various reasons such as opti-
mizing wireless sensor topology [34], detection of false
memory sharing [35], and management of network power
[36]. Various machine learning algorithms are implemented
in these designs such as decision trees and artificial neural
networks. We use decision trees for predicting the direc-
tion of traffic in QORE due to the simplicity during the
testing phase. Testing in decision trees is simple because
the algorithm uses a few comparisons instead of more
complicated operations such as multiplication or addition.
Training for the machine learning algorithm can be done
offline so that it does not effect the performance of the
applications. An example decision tree is shown in Figure
5. Each node in the tree is a input, or feature, used to predict
the target output. The target output of a decision tree is
a discrete class. In the case of x links, our three output
classes are EAST, WEST, or BOTH and for y links the
output classes are NORTH, SOUTH, or BOTH, indicting
where the majority of the traffic is moving.

In order to train the decision tree, a set of input features
must be engineered. Figure 6 shows a list of possible
features that can be used to detect the traffic on the +x
links of router 0 (links a, b, c, and d in Figure 4). Note
that these links can also be labeled as the -x links of router
1. The features include various link and buffer utilizations
from router 0 and surrounding routers. Initially, the features
were selected based on intuition of good predictors. For
example, packets using the -x links of router 2 can possibly
use the -x links of router 1 in the future. The algorithm
used to build the tree will refine our list of features and use
only the features which are most useful in predicting traffic
direction. Every Rw cycles the features will be collected,
stored in expanded LSTs, and used to predict the outcome
of the next Rw cycles. Each LC will be implemented with
a decision tree but the features will vary slightly depending
on the location of the links in the network.

We use the ID3 algorithm [37] to train the decision
trees. The ID3 algorithm, shown in Algorithm 2, uses a
set of training data, D, and a set of features, F. At each
node in the tree, the algorithm finds one feature, X, which
has the largest information gain. The training data D is
then partitioned so that all examples that have the same
value Xi for feature X are put into a new dataset Di. The
ID3 algorithm is then recursively called on the new data
set and on a new set of features that is without feature
X. The algorithm recursively builds rest of the tree with
the terminating condition being all examples in D have the

IEEE TRANSACTIONS ON COMPUTERS 7

R0 +x Features

• Link difference = (Pkts sent on +x) – (Pkts received from +x)

• Request difference = (Requests sent on +x) – (Requests received from +x)

• Response difference = (Responses sent on +x) – (Responses received from +x)

• R0 core buffer utilization

• R1 core buffer utilization

• Core buffer difference = (R0 core buffer utilization) – (R1 core buffer utilization)

• R0 +y buffer utilization

• R1 +y buffer utilization

• R1 +x buffer utilization

• Buffer difference = (R1 –x buffer utilization) – (R0 +x buffer utilization)

• Other direction difference =

 (Pkts sent on others directions for R0) – (Pkts sent on others directions for R1)

• R0 +y link difference

• R1 +y link difference

• R1 +x link difference

• R4 +y link difference

• R0 core pkt difference =

 (Pkts sent by R0 cores on +x) – (Pkts received by R0 cores from +x)

• R1 core pkt difference =

 (Pkts sent by R1 cores on -x) – (Pkts received by R1 cores from –x)

Fig. 6: List of possible features for predicting traffic on the
+x links of router 0.

Algorithm 2 ID3 algorithm used to build the decision tree
[37].
ID3(Training data D, Feature F):

if all examples in D have the same label:
return a leaf node with that label

let X∈F be the feature with the largest information gain
let T be a tree root labeled with feature X
let D1, D2, ..., Dk be the partition produced by splitting D
on feature X
for each Di∈D1, D2, ..., Dk:

let Ti=ID3(Di, F-{X})
add Ti as a new branch of T

return T

same label. However, we modify the terminating condition
to limit the size of the tree to three levels so that the number
of comparisons during testing is reduced to only three. The
implementation of the design tree has a minimal overhead.
Results from the Synopsys Design Compiler using a 40 nm
technology library show a power (dynamic and leakage)
of approximately 3.99 µW , an area of 29.81 µm2, and a
timing of 0.17 ns. In Section 5.7 we show the decision tree
and the accuracy of our decision tree in predicting traffic
flows.

4.5 Router Architecture
Figure 7 shows the router microarchitecture of QORE. The
four links to the left of the router can act as outputs or
inputs. When acting as an output, the data comes from the
crossbar and is demultiplexed onto the four channel buffers.
As an input, the data is multiplexed into the crossbar. After
a signal is multiplexed, it is normally sent straight to the
crossbar. However, it can be sent to an escape buffer. This
escape buffer is used to move packets from the channel
buffers when the links are reversed. They are also used to
avoid deadlocking [38] as explained in Section 4.6. When
the escape buffers are full the upstream router will receive
a congestion signal and will not send packets to the channel
buffers; therefore, guaranteeing that the escape buffers will
have enough room to flush out the channel buffers. Four
buffers are used because at most four channel buffer lines
will reverse direction. Therefore, the four escape buffers

From Cores
To Cores

4 Esc.
Buffers

Ring

LC FC

RC SC

Counter

updates

Xbar

VCs

LSTs

Router

flit

signal

Link 0

dir

+

1

1

link 0

count

-

Fig. 7: Router Microarchitecture showing inputs/outputs,
LC, FC, and RC.

ensures that a packet will have a buffer to go to when
the links reverse. Each time a flit traverses the links, the
counters in the LSTs are incremented or decremented based
on the link direction. The inset in Figure 7 shows the
counter for link 0. When a flit traverses a link, it signals
the counters and increments the flitcount in the LST if the
direction is in or decrements the flitcount if the direction
is out. The LC and FC blocks access information from
the LSTs as described in the previous section. The route
computation (RC) is modified to determine which link to
send data on in addition to which direction to send the
packet. The link decision is based on which link has the
lowest count in the LST. Therefore, the traffic will be
spread evenly among the links. The switching control (SC)
sends the release (rel) and reverse (rev) signals to the
channel buffers. When there is contention at the crossbar
or downstream router, the SC notifies the channel buffers
to store the data by setting the rel signal to 0 as explained
in Section 3. The SC also reads the LSTs to obtain the rev
signal, notifying the channel buffers of the correct direction.

4.6 Deadlock Avoidance and Reliability Concerns

In conventional NoCs, XY routing algorithm is used to
avoid deadlocks by avoiding turns (Y-to-X). However when
links reverse, if not handled properly, there is a potential
for deadlock as communication in one direction can be cut
off leading to starvation. In QORE, we avoid deadlocks by
a) maintaining connectivity, thereby, eliminating starvation,
b) using escape VCs to flush out channel buffers during
reversing, and c) keeping packets on the backup ring
network until their destination is reached. To prove that
our network is deadlock-free we examine the three possible
states of the N links between routers:

Case I: Zero to N-2 links are faulty. In order to prevent
deadlocks, connectivity must remain between routers. FC
algorithm 1 first assigns one link to the non-majority
direction then assigns the remaining links to the majority
direction. This ensures that there is always a connection

IEEE TRANSACTIONS ON COMPUTERS 8

TABLE 1: Cache and core parameters used for Splash-2,
PARSEC, and SPEC2006 application suite simulation.

Parameter Value
L1/L2 coherence MOESI

L2 cache size/assoc 4MB/16-way
L2 cache line size 64

L2 access latency (cycles) 4
L1 cache/assoc 64KB/4-way

L1 cache line size 64
L1 access latency (cycles) 2

Core Frequency (GHz) 5
Threads (core) 2

Issue policy In-order
Memory Size (GB) 4
Memory Controllers 16

Memory Latency (cycle) 160
Directory latency (cycle) 80

in both directions. Conventional deadlock-free algorithms
such as XY routing can, therefore, be applied and deadlocks
are completely avoided.

Case II: N-1 links are faulty. Again, in order to prevent
deadlocks, connectivity must remain between routers. How-
ever, in this case only one link is available. The algorithm
of the FC will assign this one link to the majority direction.
Then at 60% of Rw, FC will change the Direction field in
the LST to the opposite direction. This will cause the link
to flush out the data from the channel buffers to the escape
VCs located at the downstream router, thereby, allowing
packets to be sent in the opposite direction. Therefore, 60%
of Rw will be allocated to the majority direction and 40%
of Rw will be allocated for the opposite direction, providing
full connectivity.

Case III: All N links are faulty. In this case, no channel
buffers are available and protocol states that packets must
use the backup ring network to proceed. To avoid deadlocks
and livelocks, packets must remain on the backup ring
network until their destination is reached. We ensure the
packet stays on the ring by adding a one bit ring field to
the packet that indicates to the RC whether or not the ring
network should be used. When the ring bit is ”1”, the RC
will always send the packet on the ring even if router links
are available. If the ring bit is ”0” then the router links
must be used. To avoid circular dependencies once on the
bidirectional ring, a separate set of VCs is allocated to each
direction.

Protocol deadlocks can be avoided since each link has
two buffer lines. One buffer line can be assigned to requests
while the other is used for response traffic. Other than
deadlocks and livelocks, another concern may be the issue
of the fault tolerant components themselves failing such
as the backup ring network or the fault controllers. The
backup ring network adds redundancy to links between
routers. Moreover, since this backup ring network does not
use reversible channel buffers, it has 10 less transistors at
every repeater creating a more robust connection between
routers. For the LC, FC, and LSTs, since they have a very
small overhead, as shown in Section 5.1, these components
would be ideal for dual modular redundancy (DMR) or
triple modular redundancy (TMR).

TABLE 2: Power overhead for the components of one
router.

Baseline QORE Percent Diff.
Storage 111.6 mW 19.8 mW -82.3%

LC 0 96.27 nW -
FC 0 96.64 nW -

Control Block 0 16.32 nW -
Link (2×96 bits) (6×32 bits)

307.2 mW 307.2 mW 0%
Crossbar (8×8) (9×9)

67.4 mW 86.2 mW +27.9%
Total 486.2 mW 413.2 mW -15.0%

TABLE 3: Area overhead for the components of one router.

Baseline QORE Percent Diff.
(µm2) (µm2)

Storage 43,712 147,392 +237.2%
LC 0 1.41 -
FC 0 1.42 -

Control Block 0 83.97 -
Link (2×96 bits) (6×32 bits)

23,629 23,629 0%
Crossbar (8×8) (9×9)

580,007 622,418 +7.3%
Total 647,348 793,442 +22.6%

5 EVALUATION

In this section, we first consider the overhead for our
reconfiguration controllers and reversible buffers. Next, we
evaluate the fault tolerant performance of QORE compared
to the Ariadne [13], Vicis [14] networks by evaluating
throughput and power on synthetic traffic as well as
speedup on real benchmarks. Lastly, we consider the effect
of our reversibility on the overall performance of QORE
when no faults are present by comparing to BAR [23] which
is not a fault tolerant network.

For open-loop measurement, we varied the network load
from 0.1-0.9 of the network capacity. The simulator was
warmed up under load without taking measurements until
steady state was reached. Then a sample of injected packets
were labeled during a measurement interval. The simulation
was allowed to run until all the labeled packets reached
their destinations. All designs were tested with different
synthetic traffic traces such as Uniform Random (UN),
non-uniform random (NUR), Bit-Reversal (BR), Butterfly
(BFLY), Matrix Transpose (MT), Complement (COMP)
and Perfect Shuffle (PS).

For closed-loop measurement, the full execution-driven
simulator SIMICS from Wind River [39] with the memory
package GEMS [40] was used to extract traffic traces
from real applications. The Splash-2, PARSEC, and SPEC
CPU200 workloads were used to evaluate the performance
of 64-core networks. Table 1 shows the parameters for
the cache and core used for the Splash-2, PARSEC, and
SPEC2006 benchmarks. We assume a 2 cycle delay to
access the L1 cache, a 4 cycle delay for the L2 cache,
and a 160 cycle delay to access main memory. The power
and area results were estimated using the Synopsys Design
Compiler with the 40 nm TSMC technology library.

For fair comparison, every network had 4 VCs per input

IEEE TRANSACTIONS ON COMPUTERS 9

FMM FFT

0

0.5

1

1.5

2

2.5

3

3.5

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

S
p

e
e

d
u

p

* * * * * * * * * * * *

bzip freqmine

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

*High number

of subnetworks

* * * * * * * * * * * *

Fig. 8: Speedup of relative to Vicis with varying number of faults where BAR (B), QORE (Q), Ariadne (A) relative to
Vicis (V) for 64 cores with SPLASH-2, PARSEC, and SPEC CPU2006 benchmarks.

and each network was assumed to have a concentration of
four cores to a single router as this has been shown to min-
imize energy and latency while allowing a larger number of
cores on a chip [41]. Additionally, we maintained similar
bi-sectional bandwidths for each network. The conventional
router design (both Ariadne and Vicis) will have two links
between each router (one for each direction) and QORE has
at most six links between routers (four reversible links, two
unidirectional links for the ring) for a ratio of 1:3. However,
the bandwidth of each link in QORE is 32 bits/cycle so
the total bandwidth between routers will be 192 bits/cycle.
Therefore, each link in the conventional design will be
192/2=96 bits/cycle which is 3X the bandwidth of a QORE
link. We have assumed that the backup ring network is
fault-free and the packet size is four flits each 128 bits.

5.1 Power, Area, and Timing of Reversibility Over-
head
Table 2 shows the power overhead for the network com-
ponents of one router estimated from the Synopsys Design
Compiler with a nominal supply voltage of 1.0 V and an
operating frequency of 2 GHz. A buffer for the baseline
design is a a four flit register buffer and a buffer for
QORE is a four stage reversible channel buffer. Each
router, in either design, contains 32 buffers (4 inputs ×
8 buffers). The buffers in QORE consume 19.8 mW of
power; approximately 82.3% less than the baseline register
buffers. The amount of leakage power for the reversible
channel buffer was found to be 2.44 nW. The overhead of
the LC and FC is approximately 96 nW of power and a
timing of 0.07 ns. The power of the control block used to
switch MFC states was found to be approximately 16.32
nW. The power is a minimal fraction of the total router
and the timing is within or clock period. The link power
for both baseline and QORE are equal since the total link
bandwidth is kept equal. An crossbar power overhead of
27.9% is due to the backup ring network in QORE leading
to a slightly larger crossbar.

Table 3 shows the area overhead of each router compo-
nent. The buffers in QORE occupy 147,392 µm2 which is
3.4× more area than the baseline register buffers. However,
unlike register buffers and conventional channel buffers, our
channel buffers serve three functions: storage, reversibility,

and a link repeater. The area overhead of the LC and FC
components are approximately 1.4 µm2 which is minimal
compared to the other router components. The area over-
head of the MFC control block was found to be 83.97 µm2.
The timing for our reversible channel buffers was estimated
to be 0.39 ns which is within our specified clock period
of 0.50 ns. The critical path of the four stage reversible
channel buffers was composed of eight pass gates (0.22
ns) and four non-reversible channel buffers (0.17 ns). The
timing of the critical path as well as estimate of power and
area accounted for all additional wiring required between
routers.

5.2 Speedup on Real Applications

The speedup of BAR (B), QORE (Q), Ariadne (A) relative
to Vicis (V) for different real applications is shown in
Figure 8. The networks were simulated on all applications;
however, we only have space to show four applications in
the figure. QORE reconfigures its links every Rw = 50
cycles. Different values of Rw are evaluated in our prior
work [28]. Before runtime, faults were randomly inserted
into a percentage of links ranging from 0% to 50%. Since
BAR is not a fault tolerant network, it is only shown for 0%
faults. At 0% faults, the performance optimized BAR has
the largest speedup for all applications as expected. At low
to medium faults (0-30%), QORE has an average speedup
of 1.68× across applications for all benchmarks. At a high
number of faults (40-50%), QORE has a worse speedup
of 0.51× on average. However, this can be misleading
because the high number of faults causes Ariadne and Vicis
to be split into small subnetworks. Subnetworks are very
undesirable because cores from one subnetwork will not be
able to communicate with cores from another subnetwork.
QORE always maintains connectivity through the backup
ring network. The number of subnetworks in Ariadne
and Vicis increase with the number of faults from four
subnetworks at 30% faults to 13 subnetworks at 50% faults.
Subnetworks partition the chip, blocking communication to
many cores. The subnetworks, therefore, lead to a false
increase in speedup as also observed in [13]. Whereas,
the reversibility of links makes QORE more resilient to
communication blocking.

IEEE TRANSACTIONS ON COMPUTERS 10

Mix 1 Mix 2

0

0.05

0.1

0.15

0.2

0.25

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

S
a
tu

ra
ti

o
n

 T
h

ro
u

g
h

p
u

t
(f

li
ts

/c
y
c
le

/c
o

re
)

Fig. 9: Saturation throughput for varying percentage of link
failures for different traffic mixes for BAR (B), QORE (Q),
Ariadne (A) and Vicis (V).

5.3 Network Throughput with Faults

The saturation throughput of the networks for different
synthetic traffic mixes is shown in Figure 9. Four different
types of traffic mixes we examine are shown in Table
4 using the abbreviations defined previously in Section
5. However, only two mixes are shown due to space
constraints. Each mix randomly cycles through each pattern
every TP=250 cycles. QORE reconfigures its links every
Rw = 50 cycles.

In Figure 9, QORE consistently has similar throughput
to BAR and a higher throughput than both Ariadne and
Vicis. Averaged over each traffic mix and fault percentage,
QORE’s saturation throughput is 2.3× and 2.9× higher
than Ariadne and Vicis, respectively. Similar to the speedup
results, an increase in throughput can be seen in all mixes
when the fault percentage changes from 20% to 30%.
Again, this is due to link faults causing the network to
be partitioned into smaller subnetworks. When the faults
increase to a high percentage (40-50%), few flits are sent
on a network that has many cores, so the throughput
(flits/cycle/core) starts to decrease again.

From 0-20% faults, QORE only sees a drop in perfor-
mance of 3.5% averaged over all mixes compared to an
approximately 70% drop for Ariadne and Vicis. QORE is
able to sustain performance due to the adaptability of its
links. When a wire between two routers is faulty in Ariadne
or Vicis, then all communication between those two routers
is blocked even if other wires are non-faulty. With many
faults, this limits the number of paths in the network.
Therefore, many packets are sharing the same paths which
causes a drastic increase in contention for links. QORE, on
the other hand, can overcome one or more faulty wires
by reversing the available non-faulty links. Reversibility
preserves paths between routers which relieves contention.
Maintaining minimal contention for links is a main factor
for maintaining high throughput.

TABLE 4: Traffic Mixes

Mix Patterns
Mix 1 BR, BFLY, COMP
Mix 2 NUR, BR, PS
Mix 3 UN, BFLY, MT
Mix 4 UN, BR, COMP, PS

0

100

200

300

400

500

600

700

0.01 0.06 0.11 0.16 0.21

L
a
te

n
c
y
 (

c
y
c
le

s
)

Offered Load

BAR
QORE
Ariadne
Vicis

(a) 0%

0

100

200

300

400

500

600

700

0.01 0.06 0.11 0.16

L
a
te

n
c
y
 (

c
y
c
le

s
)

Offered Load

QORE
Ariadne
Vicis

(b) 30%

Fig. 10: Latency plots for traffic mix 1.

5.4 Packet Latency with Faults

Figure 10 shows multiple plots for the packet latency at
various fault percentages for traffic mix 1. Latency plots
at 10%, 20%, 40%, and 50% faults were not shown due
to space constraints. At 0% faults, BAR saturates at the
highest load due to its adaptability, and fine-grained flit
transmission. The low load latency for both BAR at 0%
faults and QORE for all faults is higher than both Ariadne
and Vicis. This is due to the serialization delays combined
with narrow links in BAR and QORE. However, QORE
saturates at a higher load for most fault percentages. At
10%, 20%, and 30% faults, QORE saturates at least 77%,
160%, and 150% higher than Ariadne and Vicis. Faults
in Ariadne and Vicis can easily shut down communica-
tion between routers. The fault tolerant schemes in these
networks forces many packets to take additional hops to
reach their destinations because they must move around
routers. The increase in hop count greatly increases packet
latency for the Ariande and Vicis networks. QORE is able
to route more packets minimally to their destination to
keep latency low. At 50% faults, Ariadne and Vicis saturate
87.5% higher than QORE. However, this is due to the many
unreachable cores in Ariadne and Vicis which create very
small subnetworks resulting in packets with little to no
contention.

IEEE TRANSACTIONS ON COMPUTERS 11

Mix 1 Mix 2

0

200

400

600

800

1000

1200

1400

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

P
o

w
e
r

p
e
r

F
li

t
(m

W
)

Fig. 11: Network power for different traffic mixes for BAR
(B), QORE (Q), Ariadne (A) and Vicis (V).

5.5 Network Power
The total network power for the networks is shown in
Figure 11 for different numbers of link faults and two
mixes, although we evaluated the network on all four mixes.
For mix 1, QORE saves at least 15% power over Ariadne
and Vicis on average. Additionally, QORE saves 25%, 22%,
and 23% on traffic mixes 2, 3, and 4. The main contribution
to the power savings is the link power. Ariadne and Vicis
route around faulty links which many times leads to packets
taking non-minimal paths to the destination. QORE can
avoid this as long as there is one working link between
routers. The only time QORE has the possibility to take a
non-minimal path is when the backup ring is used which,
in this simulation, only occurred when the fail percentage
was 50%. As seen in Figure 11 for 50% faults, the power
of QORE is higher than Ariadne because of the backup
ring routes packets on non-minimal paths for this particular
traffic mix. BAR has a power 9.5% less than QORE due
to the backup ring in QORE which increases the crossbar
size by one. However, when the number of faults increases,
QORE cannot be compared to BAR since BAR is not a fault
tolerant network. Therefore, QORE can save approximately
21% power on average while providing better fault coverage
with a speedup 1.3× higher and improved throughput by
2.3×.

To examine the effect of channel buffers on QORE,
Figure 12 shows only the buffer power of a flit. Only traffic
mix 1 is shown, other mixes showed very similar results.
QORE reduces buffer power by 53.2% on average. This
savings is due to the low-power channel buffers. The only
time register buffers are used in QORE is when a packet
is being sent from a core, when a packet is on the backup
ring, or when escape buffers are used. The increase in buffer
power at 50% faults for QORE is due to the increased use
of the backup ring.

5.6 Sensitivity Study: Varying Number of Links
In this section, we evaluate the effect of varying the number
of links between routers, N . We vary N from 2 reversible
links between routers (Q2) to 4 links (Q4) to 8 links
(Q8). As we vary N , the total bandwidth of the links

0

1

2

3

4

5

6

7

0 10 20 30 40 50

B
u

ff
e

r
P

o
w

e
r

p
e

r
F

li
t

(m
W

)

Link Faults (%)

Bar

QORE

Ariadne

Vicis

Fig. 12: Buffer power for traffic mix 1.

also varies in order to maintain equal bandwidth for a fair
comparison. Therefore, Q8 has half the link bandwidth of
Q4 which has half the link bandwidth of Q2. Figure 13
shows the saturation throughput for the various values of N
as the link failure percentage increases. Q2 always has the
lowest throughput due to the small number of links between
routers. Even though Q2 has the highest link bandwidth, the
reversibility of the links is very limited. Additionally, the
backup ring network is highly utilized in Q2. At a 50%
link error rate the probability of both links between any
two routers failing is 25%. On the other hand, at a 50%
link error rate Q8 only has a 0.3% chance of all eight
links between any two routers failing. This means that
Q8 will have to use the backup ring network much less
often. Therefore, at higher fault percentages (approximately
greater than 20%) Q8 has the highest throughput due to link
availability and the rare use of the backup ring. However,
since each link in Q8 has half bandwidth of the links in
Q4, the saturation throughput of Q4 is higher at lower fault
percentages (≤20%).

5.7 Accuracy of Decision Trees

In this section, we will show the results of the decision
tree used to predict traffic flow. We randomly selected four
of the 19 real applications to be used for training (Black-
Scholes, Ferret, Bzip, and Radix) and use the remaining 15
applications for testing. Some features have three values: In,
Out, or Even. The value is Even if the difference between
incoming and outgoing packets is less than or equal to one
packet. Other features have two values: Low and High. The
threshold to determine Low and High is the median of the
feature.

The ID3 algorithm was used to build the trees and the
results for the +x links of router 0 are shown in Figure
14(a). The root of this tree is the feature which represents
the link utilization on the +x links of router 0 during the
previous Rw cycles. This feature alone is the logic used
in our baseline LC shown in Algorithm 1. Depending on
the link utilization, the tree is further expanded to check

IEEE TRANSACTIONS ON COMPUTERS 12

0

0.05

0.1

0.15

0.2

0.25

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

S
a
tu

ra
ti

o
n

 T
h

ro
u

g
h

p
u

t
(f

li
ts

/c
y
c

le
/c

o
re

)

Mix 1 Mix 2

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

Q
2

Q
4

Q
8

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

Mix 3 Mix 4

Fig. 13: Saturation throughput for varying percentage of link failures for different traffic mixes for QORE of N values:
2 links (Q2), 4 links (Q4), and 8 links (Q8).

Link Diff

In
Out

Even

R1 +x

Link Diff

Core Buf

Diff

R1 +y

Link Diff

Low High

R1 +x

Lnk Diff

In Even Out

Req. Diff
R4 +y

Lnk Diff
Res. Diff

In Even Out

R1 +y

Buf

R1 +y

Buf

R1 +x

Lnk Diff

In
Out

Even Low High In
Out

Even

W B W

E

B W

Low High

B E W E W

In
Out

Even

W E W

In
Out

Even

E B B

In
Out

Even

W W B

R0 +x Link W=West

E=East

B=Both

(a)

R5 +y Link

Diff

In
Out

Even

R5 –x

Link Diff

R5 +y

Buf

R5 +y

Buf

In Even Out

R5 +x

Lnk Diff

R1 –x

Lnk Diff
R5 +x

Lnk Diff

R5 –x

Lnk Diff

R1 +y Link

Low High

R5 +x

Lnk Diff

In
Out

Even In
Out

Even

B N

Low High

In
Out

Even In
Out

Even In
Out

Even

S

S N S S

N

N N B B B N S N N

N=North

S=South

B=Both

(b)

Fig. 14: (a) Decision tree for the +x links of router 0 and (b) decision tree for the +y links of router 1.

other features. For example, another good predictor is the
R1 +x link difference because many of the same packets
use both the R1 +x links and the R0 +x links. Other links
in the network may have trees with different features. For
example, the decision tree for the +y links of router 1 are
shown in Figure 14(b). The root of this tree is different
and represents the R5 +y link difference. The R5 links are
directly north of R1 and much of the traffic on the R5 +y
links is either coming from or going to the R1 +y links.
Buffer utilization is another important feature in both trees
because it is likely that packets waiting in buffers will use
the links of interest in the future. If all of the leaves of a
node have the same label then that feature is pruned from
the tree and replaced with that label. This makes the tree
more efficient at test time since only two comparisons are
needed to find the label for that branch.

Figure 15 shows the accuracy of the decision trees for all
of the links connected to router 0 and router 1. We compare
the decision tree (DT) to a uniform random labeling and to
one feature - the root of each tree. We can accurately predict
the outcome better than a random labeling in every case.
On testing data, we can outperform a one feature labeling
for the x links and perform equal to or worse for the y
links. The y links are more difficult to predict due to the
XY routing used in the network. In XY routing, packets
use the x links first then the y links. The y links have more
possibilities as to which links/buffers were previously used

because packets on the y links could have previously been
on other y links or other x links. On the other hand, packets
on the x links could have only come from other x links.
Overall, our results show a 10.35% improvement over a
random labeling and a 1.25% improvement over one feature
labeling. The accuracy on training data is also shown in
Figure 14(b). In the certain cases, such as the R0 +y link,
the tree can be trimmed down to one feature to reduce
overfitting and improve performance.

6 RELATED WORK

With the increase of soft and hard errors in NoCs due to
decreasing technology sizes, much research has gone into
the detection and handling of errors. Built-In Self Tests
(BISTs) are commonly used to detect errors in systems.
Recently, NoCAlert [15] was proposed which detected
faults in real-time with 0% false negatives. Low overhead
checkers were used to detect faults without the need of
periodic or triggered-based testing.

As described in the introduction, the Ariadne [13] net-
work uses up*/down* routing to move around faults. Each
time a fault was detected, new routing paths were created
by transmitting a series of flag broadcasts to all routers.
This created a deadlock-free tree network for the irregular
topology. The Vicis [14] network also changes its routing
algorithm to move around faults when detected. To avoid
deadlocks, turn restrictions are placed at certain routers. The

IEEE TRANSACTIONS ON COMPUTERS 13

R0 +x Link R0 +y Link R1 +x Link R1 +y Link

Training

Data

Testing

Data

Training

Data

Testing

Data

Training

Data

Testing

Data

Training

Data

Testing

Data

Random 30.3% 33.4% 31.9% 33.2% 31.6% 34.0% 32.1% 35.1%

One

Feature

47.8% 40.1% 44.2% 44.7% 54.0% 44.9% 45.7% 42.4%

DT 56.7% 46.6% 52.4% 40.9% 61.1% 47.2% 53.4% 42.4%

Fig. 15: Accuracy of four different decision trees.

Immunet [16] design avoids faults by adaptively routing
packets while using escape VCs to avoid deadlocks. Our
design differs from these previous works in that we try to
avoid additional hops when possible by using reversible
links. The implementation of reversibility eliminates the
need for routing tables and multiple flag broadcasts to
reconfigure the network as seen in Ariadne. Furthermore, in
other networks, if one of the two unidirectional links fails
then neither link can be used because this would create
a one way path to a router. We mitigate this problem by
using reversible links as opposed to unidirectional links.
Therefore, as long is there is one good link to a router,
communication will not be halted.

In [23], a bandwidth-adaptive router (BAR) was created
to increase channel utilization without affecting network la-
tency. BAR increased channel utilization by using narrower
channels while also improving performance through adap-
tive bidirectional channels. Our work also differs from BAR
in that we reverse links as well as buffering by using re-
versible channel buffers. The reversing of buffers as well as
links allows the downstream routers to store the increasing
number of packets. Additionally, we reverse links/buffers
at a coarser granularity to reduce serializer/deserializer
overhead. Another reconfigurable design was proposed in
BiNoC [22]. BiNoC dynamically reconfigured bidirectional
channels to improve performance. We differ from BiNoC
in that we reverse buffering as well as links to provide fault
tolerance.

7 CONCLUSIONS

With the decreasing technology sizes and increasing num-
ber of cores number integrated on a single chip, the design
of fault tolerant NoCs that do not degrade performance
is critical. In this paper, we propose QORE - a fault
tolerant NoC architecture using reversible channel buffers.
We use QORE’s reversibility for increased performance
and to overcome faulty links. We also engineer features
and use decision trees to predict traffic direction on the
links to improve the link controllers. Experimental results
show that a decision tree predicts the direction of the
traffic with higher accuracy on average than a predictor
based on thresholded link utilization. Our results on real
benchmarks (SPEC CPU2006, PARSEC, and SPLASH-
2) show an increase in speedup of 1.3× and improved
throughput by 2.3× on synthetic traffic compared to related
work. Using the Synopsys design compiler, we show that
QORE reduces network power by 21% while requiring
minimal control overhead.

ACKNOWLEDGMENT
This research was supported by NSF awards CNS-
1318997, ECCS-1342702, CCF-1420681, CCF-1439142,
CCF-1054339 (CAREER), ECCS-1129010, CCF-1318981,
ECCS-1342657, and CCF-1420718.

REFERENCES
[1] L. Benini and G. D. Micheli, “Networks on chips: A new soc

paradigm,” IEEE Computer, vol. 35, pp. 70–78, 2002.
[2] W. J. Dally and B. Towles, “Route packets, not wires,” in Proceed-

ings of the Design Automation Conference (DAC), Las Vegas, NV,
USA, June 18-22 2001.

[3] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-
ghz mesh interconnect for a teraflops processor,” IEEE Micro, pp.
51–61, September/October 2007.

[4] J. Held, “Single-chip cloud computer: An experimental many-core
processor from intel labs.” Presented at Intel Labs Single-chip Cloud
Computer Symposium, Santa Clara, California, Feb. 12, 2010.

[5] P. Kundu, “On-die interconnects for next generation cmps,” in
2006 Workshop on On- and Off-Chip Interconnection Networks for
Multicore Systems, Stanford, CA, USA, December 6-7 2006.

[6] G. Michelogiannakis, D. Sanchez, W. Dally, and C. Kozyrakis,
“Evaluating bufferless flow control for on-chip networks,” in Fourth
ACM/IEEE International Symposium on Networks-on-Chip (NOCS),
May 2010, pp. 9–16.

[7] A. K. Kodi, R. Morris, D. DiTomaso, A. Sarathy, and A. Louri,
“Co-design of channel buffers and crossbar organizations in nocs
architectures.” IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2011.

[8] G. Michelogiannakis, J. Balfour, and W. J. Dally, “Elastic-buffer flow
control for on-chip networks,” in Proceedings of the Fifteenth Inter-
national Symposium on High-Performance Computer Architecture,
2009, pp. 151–162.

[9] A. K. Kodi, A. Sarathy, and A. Louri, “ideal: Inter-router dual-
function energy- and area-efficient links for network-on-chip (noc),”
in Proceedings of the 35th International Symposium on Computer
Architecture (ISCA’08), Beijing, China, June 2008, pp. 241–250.

[10] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-
chip networks,” in Proceedings of the 36th annual International
Symposium on Computer Architecture, June 2007.

[11] M. Hayenga, N. E. Jerger, and M. Lipasti, “Scarab: A single cycle
adaptive routing and bufferless network,” in Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture,
December 2009.

[12] Z. Zhang, Z. Guo, and Y. Yang, “Bufferless routing in optical
gaussian macrochip interconnect,” IEEE Transactions on Computers,
vol. 63, no. 11, pp. 2685–2700, Nov 2014.

[13] A. DeOrio, L.-S. Peh, and V. Bertacco, “Ariadne: Agnostic recon-
figuration in a disconnected network environment,” in International
Conference on Parallel Architectures and Compilation Techniques
(PACT), 2011, pp. 298–309.

[14] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and
D. Blaauw, “A highly resilient routing algorithm for fault-tolerant
nocs,” in Proceedings of the Conference on Design, Automation and
Test in Europe, 2009, pp. 21–26.

[15] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “No-
calert: An on-line and real-time fault detection mechanism for
network-on-chip architectures,” in to appear in The 45th Annual
IEEE/ACM International Symposium on Microarchitecture, 2012.

[16] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet:
A cheap and robust fault-tolerant packet routing mechanism,”
SIGARCH Comput. Archit. News, vol. 32, no. 2, 2004.

[17] J. Kim, C. Nicopoulos, D. Park, N. Vijaykrishnan, and C. R.
Das, “A gracefully degrading and energy-efficient modular router
architecture for on-chip networks,” in Proceedings of the 33rd annual
international symposium on Computer Architecture, 2006, pp. 4–15.

[18] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-noc:
a heterogeneous network-on-chip architecture for scalability and
service guarantees,” in Proceedings of the 38th annual international
symposium on Computer architecture, 2011, pp. 401–412.

[19] S. Lin, J. Shi, and H. Chen, “Designing cost-effective network-
on-chip by dual-channel access mechanism,” Journal of Systems
Engineering and Electronics, vol. 22, no. 4, pp. 557 –564, Aug.
2011.

IEEE TRANSACTIONS ON COMPUTERS 14

[20] E. Carara, F. Moraes, and N. Calazans, “Router architecture for high-
performance nocs,” in Proceedings of the 20th annual conference on
Integrated circuits and systems design, 2007, pp. 111–116.

[21] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco,
S. Mahlke, T. Austin, and M. Orshansky, “Bulletproof: a defect-
tolerant cmp switch architecture,” in The Twelfth International Sym-
posium on High-Performance Computer Architecture, 2006, 2006,
pp. 5–16.

[22] Y.-C. Lan, S.-H. Lo, Y.-C. Lin, Y.-H. Hu, and S.-J. Chen, “Binoc: A
bidirectional noc architecture with dynamic self-reconfigurable chan-
nel,” in Proceedings of the 3rd ACM/IEEE International Symposium
on Networks-on-Chip, 2009, pp. 266–275.

[23] R. Hesse, J. Nicholls, and N. Jerger, “Fine-grained bandwidth
adaptivity in networks-on-chip using bidirectional channels,” in Sixth
IEEE/ACM International Symposium on Networks on Chip (NoCS),
May 2012, pp. 132–141.

[24] M. Hayenga and M. Lipasti, “The nox router,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitec-
ture, 2011, pp. 36–46.

[25] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, T. Wen, and S. Devadas,
“Oblivious routing in on-chip bandwidth-adaptive networks,” in
Proceedings of the 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, 2009, pp. 181–190.

[26] P. Kumar, Y. Pan, J. Kim, G. Memik, and A. Choudhary, “Exploring
concentration and channel slicing in on-chip network router,” in
Proceedings of the 2009 3rd ACM/IEEE International Symposium
on Networks-on-Chip, pp. 276–285.

[27] S.-J. Chen, Y.-C. Lan, W.-C. Tsai, and Y.-H. Hu, Reconfigurable
Networks-on-Chip. Springer, 2012.

[28] D. DiTomaso, A. Kodi, and A. Louri, “QORE: A fault toler-
ant network-on-chip architecture with power-efficient quad-function
channel (QFC) buffers,” in IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), 2014.

[29] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif,
and C. R. Das, “Vichar: A dynamic virtual channel regulator for
network-on-chip routers,” in Proceedings of the 39th Annual Inter-
national Symposium on Microarchitecture (MICRO), December 9-13
2006, pp. 333–344.

[30] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceed-
ings of the 17th International Conference on Parallel Architectures
and Compilation Techniques, October 2008.

[31] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The splash-
2 program: Characterization and methodological considerations,”
1995, pp. 24–36.

[32] L. Chen and T. M. Pinkston, “Nord: Node-router decoupling for
effective power-gating of on-chip routers,” in Proceedings of the 45th
Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-45, 2012, pp. 270–281.

[33] J. H. Collet, A. Louri, V. T. Bhat, and P. Poluri, “Robust: a new
self-healing fault-tolerant noc router,” in Proceedings of the 4th
International Workshop on Network on Chip Architectures, 2011,
pp. 11–16.

[34] Y. Wang, M. Martonosi, and L.-S. Peh, “A supervised learning
approach for routing optimizations in wireless sensor networks,” in
Proceedings of the 2nd International Workshop on Multi-hop Ad Hoc
Networks: From Theory to Reality, 2006.

[35] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe,
H. De Silva, S. Rathnayake, X. Meng, and Y. Liu, “Detection of false
sharing using machine learning,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, 2013.

[36] J. Won, X. Chen, P. V. Gratz, J. Hu, and V. Soteriou, “Up by
their bootstraps: Online learning in artificial neural networks for
CMP uncore power management,” in The 20th IEEE International
Symposium on High Performance Computer Architecture (HPCA),
2014.

[37] J. R. Quinlan, “Induction of decision trees,” MACH. LEARN, vol. 1,
pp. 81–106, 1986.

[38] Y. Ho Song and T. M. Pinkston, “A progressive approach to handling
message-dependent deadlock in parallel computer systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 14, no. 3, pp. 259–275, Mar 2003.

[39] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hll-
berg, J. Hgberg, F. Larsson, A. Moestedt, and B. Werner, “Simics:
A full system simulation platform,” Computer, vol. 35, pp. 50–58,
2002.

[40] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. Wood, “Multifacet’s
genreal execution-driven multiprocessor simulator (gems) toolset,”
ACM SIGARCH Computer Architecture News, no. 4, pp. 92–99,
November 2005.

[41] J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp on-chip
networks,” in Proceedings of the 20th ACM International Conference
on Supercomputing (ICS), Cairns, Australia, June 28-30 2006, pp.
187–198.

Dominic DiTomaso received his B.S. and
M.S. degrees in Electrical Engineering and
Computer Science from Ohio University,
Athens in 2010 and 2012. He is currently pur-
suing his PhD degree in Electrical Engineer-
ing and Computer Science at Ohio Univer-
sity. His research interests include wireless
interconnects, network-on-chips (NoCs) and
computer architecture.

Avinash Karanth Kodi received the Ph.D.
and M.S. degrees in Electrical and Computer
Engineering from the University of Arizona,
Tucson in 2006 and 2003 respectively. He
is currently an Associate Professor of Elec-
trical Engineering and Computer Science at
Ohio University, Athens. He is the recipient
of the National Science Foundation (NSF)
CAREER award in 2011. His research in-
terests include computer architecture, optical
interconnects, chip multiprocessors (CMPs)

and network-on-chips (NoCs).

Ahmed Louri received the M.S and Ph.D.
degrees in Computer Engineering from the
University of Southern California, Los Ange-
les in 1984 and 1988 respectively. He joined
the University of Arizona in 1988 where he is
currently a Professor of Electrical and Com-
puter Engineering and the Director of the
High Performance Computing Architectures
and Technologies Laboratory. His research
interests include computer architecture, par-
allel processing, interconnection networks,

optical interconnects for parallel computing systems, network-on-
chips for multi-core architectures and embedded systems. He served
as a General Chair for the 13th Annual Symposium of the High
Performance Computer Architecture (HPCA-13), Phoenix, Arizona,
2007.

Razvan Bunescu received a PhD degree
in Computer Science from the University of
Texas at Austin in 2007, with a thesis on
machine learning methods for information
extraction. He then joined Ohio University,
where he is currently an Associate Profes-
sor of Electrical Engineering and Computer
Science. His research interests are in the
general area of machine learning, with a
focus on applications in computational lin-
guistics, biomedical informatics and more re-

cently computer architecture.

