
1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCA.2014.2360686, IEEE Computer Architecture Letters

1

A Soft Error Tolerant Network-on-Chip Router
Pipeline for Multi-core Systems

Pavan Poluri and Ahmed Louri
Department of Electrical and Computer Engineering, University of Arizona

Email: pavanp@email.arizona.edu, louri@email.arizona.edu

Abstract—Network-on-Chip (NoC) paradigm is rapidly evolving into an efficient interconnection network to handle the strict communi-
cation requirements between the increasing number of cores on a single chip. Diminishing transistor size is making the NoC increasingly
vulnerable to both hard faults and soft errors. This paper concentrates on soft errors in NoCs. A soft error in an NoC router results in
significant consequences such as data corruption, packet retransmission and deadlock among others. To this end, we propose Soft
Error Tolerant NoC Router (STNR) architecture, that is capable of detecting and recovering from soft errors occurring in different control
stages of the routing pipeline. STNR exploits the use of idle cycles inherent in NoC packet routing pipeline to perform time redundant
executions necessary for soft error tolerance. In doing so, STNR is able to detect and correct all single transient faults in the control
stages of the pipeline. Simulation results using PARSEC and SPLASH-2 benchmarks show that STNR is able to accomplish such high
level of soft error protection with a minimal impact on latency (an increase of 1.7 % and 1.6 % respectively). Additionally, STNR incurs
an area overhead of 7% and power overhead of 13% as compared to the baseline unprotected router.

Index Terms—Network-on-Chip, Soft Error, Reliability, Performance
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1 INTRODUCTION

N Etwork-on-Chip (NoC) [3], [6] is a scalable inter-
connect architecture comprised of shorter wires

and is designed to tackle the increasing wire delay and
limited scalability issues of shared buses. An NoC is
comprised of routers that perform routing and links that
are used for data traversal. With the rapid decrease in
the feature size, the components of an NoC are becoming
increasingly susceptible to both hard faults and soft er-
rors. Therefore, it is imperative to integrate fault tolerant
techniques into the design of reliable NoCs.

In this paper, we focus specifically on soft errors that
can occur in an NoC router pipeline as it is responsible
for the steady flow of packets through the router. Hard
faults are discussed in a different work [11]. We propose
Soft Error Tolerant NoC Router (STNR) architecture, that is
capable of tolerating utmost three independent soft er-
rors in its pipeline. The primary characteristic of STNR is
its ability to effectively utilize idle cycles in the pipeline
stages for redundant execution and comparison and a
rollback in the event of a soft error. Unique attributes
of STNR include high level of protection from soft
errors, fault containment and no transmission penalty
encountered by a packet traversing through the pipeline
in the absence of a soft error.

2 NOC ROUTER

Figure 1(a) shows a standard 4x4 mesh topology based
NoC. Figure 1(b) [7] illustrates the architecture of an
NoC router with P input and output ports with each
input port comprised of V virtual channels. Routing
Computation (RC), Virtual Channel Allocation (VA) and
Switch Allocation (SA) form the control logic of the

router. A PxP crossbar (XB) connects the input ports of
the router to its output ports. Data traverses in an NoC
in the form of flits. A packet is segmented into a head flit,
body flit(s) and a tail flit. Figure 1(c) [7] shows the 4-stage
pipeline comprised of RC, VA, SA and XB stages.
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Fig. 1: (a) 4x4 mesh based NoC (b) NoC Router Archi-
tecture (c) NoC Router Pipeline

The RC stage processes head flits and is responsible
for selecting the output port based on the destination
information in a head flit. The VA stage also processes
head flits and is responsible for allocating buffer space
to the flit at the downstream router. Both RC and VA
stages are idle for body and tail flits. The SA stage is
active on all flits and is responsible for granting access
to crossbar for the flits of different input virtual channels.
In XB stage, flits that have been granted access in the SA
stage traverse through the crossbar and leave the router.
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3 SOFT ERROR EFFECTS ON THE PIPELINE

A soft error in RC stage would result in the calculation of
an incorrect output port leading to incorrect executions
of VA and SA stages resulting in packet drop or deadlock
or increase in the latency. A soft error in VA stage would
result in an incorrect virtual channel being allocated to
the packet that could result in data corruption leading
to retransmission of the packet and an increase in the
latency. A soft error in SA stage could result in flits of the
same packet being forwarded to different downstream
routers. If a body or a tail flit is forwarded to a different
downstream router than the head flit, it will be dropped
and the entire packet needs to be transmitted. Soft
error in the crossbar does not forward the packet to an
incorrect downstream router and hence is not as vital
as the remaining stages. Thus, it is important to tolerate
soft errors in the first three stages of the pipeline, which
is precisely the focus of STNR.

4 RELATED WORK AND MOTIVATION

In this section, we provide a brief overview of the
approaches used to tackle the issue of soft errors in
router pipeline.

In [9] the authors discuss the use of cyclic redundancy
check codes to perform end-to-end and switch-to-switch
error detection. In [8] the authors propose to use look-
ahead routing, hamming code, retransmission buffers
and compact header to tackle transient faults in the
router. In [10] the authors propose to use state informa-
tion to perform comparisons in one clock cycle to detect
transient faults in RC, VA and SA stages. In [12] the
authors propose the use of inherent information redun-
dancy present in the router pipeline to detect transient
faults in RC stage and arbitration units. In [5] the authors
propose to borrow RC units from neighboring input
ports for soft error tolerance. They use self-correcting
round robin arbitration mechanism proposed in [12] to
protect arbiters in SA stage from soft errors.

Our primary motivation for proposing STNR is to
develop a low cost technique that has a very high
level of soft error detection and that also achieves fault
containment for RC, VA and SA stages. The proposed ap-
proach is uniquely different from all existing techniques
mentioned above because, it can detect and correct all
single transient faults in RC, VA and SA stages with
minimal impact on area, power and latency. It should be
noted that the proposed architecture does not provide
protection for the buffers and the crossbar. Buffers are
usually well protected by Error Correcting Codes based
techniques. The impact of soft errors on the crossbar are
not as severe as on the other critical components of the
router pipeline [8].

5 SOFT ERROR TOLERANT NOC ROUTER

5.1 Proposed Architecture
Careful observation of the router pipeline operation
reveals that RC and VA stages are only active while
processing head flits and idle for the remaining flits of

a packet and STNR exploits these idle cycles to provide
soft error protection.

5.1.1 Temporal Redundancy for RC Stage
We propose to modify the control logic of the router state
machine to enable the RC unit to repeat its computation
in the cycle following the original route computation.
Consequently, the redundant execution of the RC stage
takes place in parallel with that of the VA stage, which is
executed assuming that the original routing computation
is error-free. The results of the two executions of the
RC unit are compared in the same cycle as that of re-
execution and 1) if the results are identical, the pipeline
proceeds in the normal manner, 2) if an error is detected,
the state machine asserts the necessary control signals
that reset the result of VA stage and trigger a rollback
that will initiate the re-execution of RC stage in the next
cycle. We assume that the rollback computation is error-
free as the probability of back to back soft errors in the
same computation stage is extremely low (as observed
from the soft error rate calculation results in section 8).
The temporal redundancy technique for the RC stage
costs two cycle delay per soft error.

5.1.2 Temporal Redundancy for VA Stage
The control logic of the router state machine is modified
to enable the VA unit to repeat its computation in the
cycle following the original virtual channel allocation.
The redundant computation is done in parallel with the
SA stage that performs its task assuming that the result
of VA stage is error-free. The results of the two execu-
tions are compared and 1) if the results are identical, the
pipeline proceeds in the normal manner, 2) if an error is
detected, the state machine asserts the necessary control
signals that reset the result of the SA stage and trigger a
rollback that will initiate the re-execution of VA stage in
the next cycle. The temporal redundancy technique for
the VA stage costs two cycle delay per soft error.

5.1.3 Spatial Redundancy for SA Stage
Temporal redundancy cannot be used for the SA stage
because this pipeline stage does not have any idle cycles.
Additionally, this stage requires much less hardware and
area compared to VA stage. Based on these observa-
tions, we chose to duplicate the SA unit for providing
soft error protection. The switch allocation is performed
twice in the original and duplicate units and the results
are compared for error detection. The state machine is
modified such that in the event of an error, the flit is not
propagated to the crossbar and SA stage is repeated in
the next cycle. The spatial redundancy technique for the
SA stage costs one cycle delay per soft error.

5.1.4 STNR Pipeline
In this sub-section, we describe the working of the STNR
pipeline. To simplify the explanation, we provide cycle-
by-cycle traversal of a flit in the proposed pipeline. We
refer to Figure 2 for this explanation.

Cycle 1 - The original RC is performed and the result
is stored in the virtual channel state.
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Fig. 2: Working of the STNR Pipeline
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Fig. 3: Performance Results

Cycle 2 - The redundant RC is executed in parallel
with VA. The result of VA is stored in the VC state. The
results of the original and redundant RCs are compared
to detect an error in the RC stage using an XOR gate.

Cycle 3 - The state of the router pipeline in this
cycle depends on the manifestation of an error in the
RC stage. (i) If RC is error free, then the SA stage is
active where the two SA units perform arbitration while
the redundant VA is done in parallel. (ii) If an error is
detected in the RC stage, a rollback is triggered, and the
pipeline performs RC in this cycle.

Cycle 4 - Assuming no error is detected in the RC
stage, the state of the router pipeline in this cycle de-
pends on the manifestation of an error in either VA or SA
stage. Because VA is prior to SA in the generic pipeline,
error detection is first performed on VA then followed
by SA. (i) If VA and SA are error-free, then the crossbar
stage is active and the flit leaves the router. (ii) If VA is
error-free, but an error is detected in SA stage, a rollback
is triggered and the two switch allocation units repeat
allocation in this cycle. (iii) If an error is detected in VA,
a rollback is triggered and the pipeline performs VA in
this cycle.

5.2 Salient Features of STNR Pipeline
• High Level of Error Detection and Fault Contain-

ment - Dual execution in conjunction with comparison
provides the highest level of error detection, as there is
no assumption on the fault. As a result, the protected
stage will always detect a single soft error. There are
two possible scenarios: (i) If a soft error has affected
a pipeline stage, the comparator will detect this error
and trigger a rollback and (ii) If a soft error affects the
comparator, it falsely detects the presence of an error in the
computation and triggers a rollback. Hence, the effect of
a fault is limited to the affected router. Error might only
propagate when two soft errors: one in the pipeline
stage and one in the comparator affect their execution
in the same cycle.

• Minimum Latency Penalty - With the protection en-
abled, a flit incurs no additional latency to traverse the
pipeline in the absence of a soft error. The extra latency
due to a soft error is 1 cycle for spatial redundant
protection and 2 cycles for time redundant protection.

6 HARDWARE SYNTHESIS RESULTS

We developed in Verilog both the baseline router and
STNR with each router comprised of 5-input and out-
put ports with each input port consisting 4 VCs and
synthesized using Cadence Encounter Compiler at 45nm
technology. Synthesis results reveal that STNR incurs an
area, power and critical path overhead of 7%, 13% and
8% with respect to the baseline router (Figure 3).

7 LATENCY ANALYSIS

7.1 Fault Model
We inject transient faults into different stages of the
pipeline based on the probabilities provided by the fault
modeling tool of Aisopos et.al [2]. The fault probabilities
of the pipeline stages vary based on the router configu-
ration and its operating temperature.

7.2 Results
We use GEM5 [4] and GARNET [1] to simulate an NoC
and the 4-stage pipeline. Transient faults are injected
during the simulations based on the fault model [2]. The
router configuration used for simulating faults is a 5-
input, 5-output port router with 4 VCs per input port.
The packet length is set to 5 flits.

For benchmark traffic, we simulated a 4x4 mesh based
NoC. The routers’ operating temperature is selected to
be 100◦C. Figures 4a (PARSEC) and 4b (SPLASH-2) show
that, in the presence of faults, the average latency has
increased by 1.7% and 1.6% respectively, compared to
the fault-free scenario.

For synthetic traffic, we simulated a 8x8 mesh based
NoC. We simulated both uniform random and tornado
traffic patterns with injection rates of 0.01, 0.05, 0.07 and
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Fig. 4: Latency Results with STNR

0.1. The routers’ operating temperature is selected to be
85◦C. Figure 4c shows that, in the presence of faults,
the average latency has increased approximately by 0.5%
compared to the fault-free scenario.

As the number of flits in a packet increases, the packet
consumes significantly more time in SA as compared to
RC and VA stages and therefore, has a higher probability
of soft error in SA stage. Since, it takes 1 cycle to correct
a soft error in the SA stage, as the number of soft
errors in the SA stage dominates the total number of
soft errors, the average latency to correct an erroneous
flit tends to approach 1 cycle (Figure 4d). Thus, longer
packets encounter less latency to correct an erroneous
flit resulting in increased throughput.

8 RELIABILITY ANALYSIS

In STNR, we consider the transmission of an erroneous
flit as failure. This happens only in the following three
cases. (i) A soft error in the RC stage and in the XOR
gate responsible for error detection in RC. (ii) A soft
error in the VA stage and in the XOR gate responsible
for error detection in VA. (iii) A soft error in the SA stage
and in the XOR gate responsible for error detection in
SA. We estimate the probability of these three cases by
calculating the soft error rate (SER) of the circuits using
the model presented in [13]. In the interest of space, we
directly provide the SER values of these stages.

The SER of RC, VA and SA stages is calculated to be
0.72∗10−7, 6.33∗10−6 and 2∗10−7 respectively. The SER
of an XOR gate is calculated to be the order of 10−8.
Thus, the probability of a soft error in the RC stage as
well as in the XOR gate responsible for error detection in
RC is calculated as 0.72 ∗ 10−7 ∗ 10−8 ≈ 10−15. Similarly,
the probability of a soft error in the VA stage as well
as in the XOR gate responsible for error detection in VA
and the probability of a soft error in the SA stage as well
as in the XOR gate responsible for error detection in SA
are of the order of 10−15. Based on this value, it can be
deduced that the probability of two soft errors occurring
in the same pipeline stage in the same cycle is very less
and since, STNR will always detect a single soft error,
it has a very high level of soft error tolerance. This has
been observed during the latency simulations, where all
the injected soft errors were detected by STNR.

9 CONCLUSION

Aggressive technology scaling is increasing the vulner-
ability of transistors to soft errors. Hence, soft error
tolerance needs to be considered in designing reliable
systems. In this work, we have proposed Soft Error
Tolerant NoC Router (STNR), a router capable of tol-
erating soft errors in the control stages of the pipeline.
STNR accomplishes soft error tolerance by performing
temporal and spatial redundant executions. Significant
characteristics of STNR include fault containment, high
level of error detection and minimum latency in trans-
mitting an error-free message. Experimental results show
that STNR detects every single soft error and incurs
minimum overhead.

ACKNOWLEDGMENT

This research was supported by NSF awards CNS-
1318997, ECCS-0725765, ECCS-1342702 and CCF-
1420681.

REFERENCES
[1] N. Agarwal, et.al, ”Garnet: A detailed on-chip network model

inside a full system simulator,” in ISPASS, pp. 33-42, 2009.
[2] K. Aisopos et.al, ”Enabling system-level modeling of variation-

induced faults in networks-on-chips,” in DAC, pp. 930-935, 2011.
[3] L. Benini and G. Micheli, ”Networks on chips: a new SoC

paradigm,” in IEEE Computer, vol. 35, no. 1, pp. 70-78, 2002.
[4] N. Binkert et.al, ”The gem5 simulator,” in SIGARCH, Computer

Architecture News, vol. 39, no. 2, pp. 1-7, 2011.
[5] C. Chen, et.al, ”A Low Cost Method to Tolerate Soft Errors in the

NoC Router Control Plane”, in SOCC, pp. 374-379, 2013.
[6] W. Dally and B. Towles, ”Route packets, not wires: On-chip inter-

connection networks”, in DAC, pp. 684-689, 2001.
[7] W. Dally and B. Towles, Principles and Practices of Interconnection

Networks, Morgan Kaufmann, 2003.
[8] J. Kim, et.al, ”Design and analysis of an NoC architecture from

performance, reliability and energy perspective,” in ANCS, pp. 173-
182, 2005.

[9] S. Murali, et.al, ”Analysis of error recovery schemes for networks
on chips,” in IEEE Design & Test of Computers, vol. 22, no. 5, pp.
434-442, 2005.

[10] D. Park, et.al, ”Exploring Fault-Tolerant Network-on-Chip Archi-
tectures,” in DSN, pp. 93-104, 2006.

[11] P. Poluri and A. Louri, ”An Improved Router Design for Reliable
On chip Networks,” in IPDPS, pp. 283-292, 2014.

[12] Q. Yu, et.al, ”Exploiting Inherent Information Redundancy to
Manage Transient Errors in NoC Routing Arbitration,” in NOCS,
pp. 105-112, 2011.

[13] M. Zhang, et.al, ”Soft-Error-Rate-Analysis (SERA) Methodology,”
in IEEE TCAD, vol. 25, no. 10, pp. 2140-2155, October, 2006.



1556-6056 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCA.2014.2360686, IEEE Computer Architecture Letters

5

Pavan Poluri received the Bachelor of Engi-
neering degree from Osmania University, India
in 2007 and Masters of Science degree in Com-
puter Science from University of Minnesota, Du-
luth, USA in 2009. He is currently pursuing his
PhD degree from the High Performance Com-
puting Architectures and Technologies Lab in
the Department of Electrical and Computer En-
gineering at The University of Arizona, Tucson,
USA. His research interests include Computer
Architecture, Network-on-Chip (NoC), Reliability

and Modeling and Simulation. He is currently a student member of IEEE.

Ahmed Louri received the PhD degree in com-
puter engineering in 1988 from the Univer-
sity of Southern California (USC), Los Ange-
les. He is currently a full professor of elec-
trical and computer engineering at the Uni-
versity of Arizona, Tucson, and the director
of the High Performance Computing Architec-
tures and Technologies (HPCAT) Laboratory
(www.ece.arizona.edu/˜hpcat). His research in-
terests include computer architecture, network-
on-chips (NoCs), parallel processing, power-

aware parallel architectures, and optical interconnection networks. He
has served as the general chair of the 2007 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), Phoenix,
Arizona. He has also served as a member of the technical program
committee of several conferences including the ANCS, HPCA, MICRO,
NoCs, among others. He is a fellow of the IEEE and a member of the
OSA.


