
Volume 72, number 1.2 OPTICS COMMUNICATIONS l July 1989

A PARALLEL ARCHITECTURE AND ALGORITHMS FOR OPTICAL COMPUTING

Ahmed LOURI
Department of Electrical and Computer Engineering, University of Arizona, ECE Building Room 320J, Tucson, AZ 85 721, USA

Received 28 November 1988

A new parallel optical architecture is introduced for computing massively data-parallel applications. The system processes two-
dimensional binary images as basic computational entities. The processing is based on the optical symbolic substitution (SS)
technique. New optical SS rules are introduced as well as a technique for designing and mapping data-parallel algorithms onto the
proposed architecture. Implementation issues and performance analysis are also considered.

1. Introduction plementation and a technique for mapping parallel
algorithms onto it.

Along with the tremendous progress in science and
technology, processing of large amounts of data in
real-time has been increasingly required in a wide
variety of applications. Examples of these applica-
tions include signal and image processing. A com-
mon factor of these applications is the high degree of
data-parallelism in which simple arithmetic and logic
operations are simultaneously applied across all the
data points. Current electronic computing systems
are not capable of dealing with the computational
requirements of massively data-parallel applications
due primarily to the limited processor-memory
bandwidth (the von Neumann bottleneck) and the
lack of adequate interconnects for inter-processor
communications.

The driving features of optical systems are the
massive fine-grain parallelism and the high degree of
communication flexibility. Large images of bright and
dark spots can be moved around with a great ease.
These attributes are well suited for applications that
require processing large amounts of structured data
such as multi-dimensional arrays and that favor
SIMD (single instruction multiple data) mode of
computations. In recent years, several SIMD optical
architectures of varying degrees of flexibility and de-
sign complexity have been proposed [I -5] . Ex-
plored here, is a parallel architecture for massively
parallel computing that is amenable to optical im-

2. The bit-plane architecture

Fig. I depicts a block diagram of the basic com-
ponents of the bit-plane architecture. The architec-
ture manipulates bit planes (or binary images) as
basic computational entities. Each bit plane i cor-
responds to a weight factor 2' in the binary repre-
sentation as shown in fig. 2. Up to three bit planes
can be processed simultaneously. For images ofn × n
elements, it follows that up to 3n 2 operations are
performed concurrently. The heart of the architec-
ture is the processing unit. Locally, this unit can be
viewed as a bit-serial or a bit-slice processor, since it
performs one logical operation, on one, two or three
single-bit operands. Globally, it can be viewed as a
plane-parallel processor, since it performs the same
operation on a large set of operands encoded as bit
planes in parallel. This bit-serial processing allows
flexible data formats and almost unlimited precision.

2.1. The processing unit

The processing unit operates in the SIMD mode of
computation, where the same operation is applied to
all the data entries. In the proposed system, pro-
cessing is based on the optical symbolic substitution
logic [1]. Information is coded as spatial symbols in

0 030-4018/89/$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)

27

Volume 72, number 1,2 OPTICS COMMUNICATIONS 1 July 1989

J

/ - -
C-plall~

H-pla,l(

Retrieve

O p t i c a l h x t e r c o n n e c t s

s s i i l g

I /__~oMb; I1~t U,.t I tffl rou,er
I[Csym .

i I
i i
i i

I

~-- Controller

i
I
i

- - ~ - - l)ata Memory Unit

_ _

: Data path
- -~ . : Control path

Data plane

Fig. 1. The architecture of an optical bit-plane array processor.

. - j

Y 4Y fof
Bit plane 2 = Bit plane 2 t Bit plane 2 0

Fig. 2. Data representation as a stack of bit plancs.

the input planes. Computation proceeds in trans-
forming these symbols into other symbols according
to a set of symbolic substitution rules specifying how
to replace every input symbol. The processing unit
is equipped with three fundamental operations: a
logical NOT which inverts all the entries of an input

plane, a logical AND, denoted by A, that performs
the logical and of the overlapping bits of two bit
planes, and a full ADD, denoted by ~ , that performs
the full addition of the overlapping bits of the three
input planes. By overlapping bits, it is meant bits with
the same cartesian coordinates (i,j) in the input

28

Volume 72, number 1,2 OPTICS COMMUNICATIONS 1 July 1989

planes. These operations constitute a complete arith-
metic and logic set capable of computing any arith-
metic or logic function.

2.2. Input~output data routing

The data represented as bit planes is fed to the sys-
tem through three input planes, namely A-, B-, and
C-plane as shown in fig. 1. Depending on the fun-
damental operation needed at a given computational
step, the input combiner performs three data move-
ment functions: for the logical NOT, it simply latches
the relevant input plane to the processing unit. For
the logical AND, the data movement required is
called the 2-D perfect shuffle. This function performs
the shuffling of the row position, i, of the data such
that the overlapping bits from the two planes be-
come spatially adjacent. This function does not af-
fect the column position, j. The data movement re-
quired for the full ADD operation is called the 2-D
3-shuffle. This function is similar to the 2-D shuffle
function except that it performs a 3-way shuffling of
the rows of the three input planes [5].

The output router is responsible for directing the
processed data to its appropriate destination. It also
performs three data movement functions, namely,
feeding back to the input combiner, a partial result
such as a carry bit plane resulting from a full ADD
operation, sending a final result to the data memory
for storage, and shifting the output either in the X or
Ydirection by a variable number of pixels. This shift
enables communication between pixels in the plane.
By means of this spatial shifting, data can be moved
among widely and at arbitrarily separated locations
in the plane.

3. Optical implementation considerations

In order to process information optically, we use
light intensity and positional coding for the data rep-
resentation. A possible representation is to encode
the logic value 0 by two pixels dark-bright, and the
logic value 1 by the inverse pattern, bright-dark as
shown in fig. 3a. In this coding scheme, a logic value
is represented not only by the intensity of the bright
pixel but also by its position, which has some im-
plementation advantages [6].

3.1. Optical substitution rules for 2-D arithmetic
and logic

Figs. 3 (b -d) depicts the symbolic substitution
rules required to optically implement the fundamen-
tal operations: logical NOT, logical AND, and full
ADD. These SS rules are derived from the truth ta-
ble specifications of these operations. The left-hand
side patterns (or search patterns) of the SS rules rep-
resent the input combinations and the right-hand
sides (or replacement patterns) represent the table
entries. The full ADD operation manipulates three
bits which gives rise to eight combinations. If we put
the bit symbols on the top of each other, we produce
eight SS rules for the full ADD. Similary, the logical
NOT, and AND give rise to two and four SS rules
respectively. Note that for the logical AND and the
full ADD operations, each bit is provided by a sep-
arate bit plane. These bits have the same coordinates
i, j in each plane. The grouping of bits into left-hand
patterns is accomplished by the data movement
functions described earlier. Optical implementation
of the two processing steps involved in symbolic sub-
stitution (pattern recognition and pattern substitu-
tion) have been suggested by several researchers [6-
9].

3.2. Implementation of the processing unit

In order to process several SS rules simultane-
ously, the output of the input combiner is replicated
a number of times equating the number of SS rules
to be activated at a given stage of computation" for
example, to perform the pairwise addition of three
input planes, we need to replicate the formatted plane
(output of the input combiner) eight times corre-
sponding to the eight SS rules associated with it. Each
copy is sent to one of the eight SS rules r~ to r8 in fig.
3. After the necessary substitutions, the outputs of all
the active SS rules are optically superimposed to form
the processed result. Thus the processing unit can be
implemented with three modules, namely, an ADD
module, an AND module and a NOT module as il-
lustrated in fig. 4. Each module comprises the SS rules
of the corresponding operation. A dynamic beam
steering element (an acousto-optic or electro-optic
deflector) is used to deflect the input plane to the
desired module.

29

Volume 72, number 1,2 OPTICS COMMUNICATIONS

0 1

[•
O-level of intensi t .y

D l-level of i n t e n s i t y

(a) Light in teus i ty coding of the values 0 nlvl 1.

l July 1989

0 rt

0 - - - ~ ; = _

I -]

0 ' , ~ t ~ ¢ ~ ',

o LL\'~ I i ~.'-.'~j

0
I

i ~ rt ~ ~ I

~__._: : : . 0

I I
I I

O i l r 2 ~ l l O

I I
I t : J l

r ~.......~ 1

0

F]
I r I

0~ ~ ~0
I I

1 , , I
L J

I-]
I T ! I R I1

1

(b) Optical SS rules for tile full ADD operator

- k ~ - l l o
L - - - . . ~ J

ri]

0

1 0

r 1

1 1

(c) Optical SS rules for the logical AND operator

. - I

. j (]

I - "3

o ,__1[~___ _ I ~ _ _ , ,

(d) Optical SS rules for the logical NOT operat(~r

Fig. 3. Optical SS rules for the fundamenta l operation: full ADD, logical A N D and logical NOT.

3. 3. Data routing and memory organization

The input and output router perform only data
movement functions, no processing is required. A
wide variety of optical methods can be imagined for
realizing the data movement functions described
earlier [10].

To maintain the 2-D processing throughout the
system, the data memory must be bit-plane address-
able. For single plane storage, such as the input and
output planes, SLM technology and bistable optical
latches [I 1,12] can be used. However, this would
not be sufficient to build a data memory unit capable
of holding a large number of bit planes. At present

30

Volume 72, number 1,2 OPTICS COMMUNICATIONS l July 1989

r !

Output of the
input combiner

I : 1 \

Input plane ynar :: rls I / Image Processed
beam steering Comblner output

element ~ sent to

'1 I i tile router
I"14

I

I N O T modu le
L

Fig. 4. The logical structure of the processing unit.

time, no real-time optical memory exists that can
achieve read and write of optical data in 2-D format
at high-speed. However, volume holograms, with
their ability to store information in three dimensions
show the potential for a dramatic increase in optical
storage density [13]. High storage density can be
achieved in random access optical memory by re-
cording stacked holograms in photorefractive crys-
tals. Another way of implementing the data memory
would be the extension of the optical disk technol-
ogy. Although optical disks are write-once today, their
extremely large storage capacity may render their
nonerasability relatively unimportant for the life-
time of the computation intended by the optical ar-
chitecture. The execution sequence and the data flow
may be controlled by a very. fast microprocessor that
executes an instruction program and generates con-
trol signals to the optical devices.

4. Mapping data-parallel algorithms

The bit-plane architecture exploits data parallel-
ism at the hardware level, which enables it to process
an entire data plane at once. To enforce this capa-
bility at the algorithm design level, we view the de-
sign and the mapping process as a hierarchical struc-
ture as shown in fig. 5. At the highest level of the
hierarchy is the application we wish to solve, i.e. sig-
nal and image processing, vision, radar application,
etc. The next level identifies the various algorithms
that can be used to compute these applications; these
include matrix algebra, numerical transforms, solu-
tions of partial differential equation, etc. A further
analysis of these algorithms reveals that they share
a common set of high-level operations, which we call
computing substructures. These substructures can in
turn be decomposed into a set of fundamental op-
erations such as the full ADD, the logical AND and
NOT. The rationale behind this approach is that nu-
merous data-parallel algorithms share common fea-

31

Volume 72, number 1,2 OPTICS COMMUNICATIONS

Application:

image processing

vision, etc..

Algorithm:
matrix algebra

trallsrorrrls /’

solutions of PDEs
,’ l

I

I’
I’ .

I’ .

I’ .

High-level I’
I’

.

operations .
\
\ . \

\
. \ .

\
\ \ l

‘\ 1

I
\ \ l \ \ l \ \

2-D addition/subtraction

2-D multiplication

Sum of the elements of a data plane

Row Sum

Column Sum

Chain multiplication

Extrema finding (Max/Min)

Finding the median of a data plane

Dotproduct

Matrix scale
Horizontal and vertical shift

logic NOT, AND

I July 1989

Fig. 5. A hierarchical top-down approach to the mapping of algorithms onto the bit-plane architecture.

tures such as localized operations, intensive com-
putations, matrix operations and communication
patterns. The high-level computing substructures are
meant to capture these features. These substructures
are directly mapped onto the hardware, and parallel
algorithm are built upon these constructs so as to
provide an efficient algorithm-architecture mapping.
In this paper, we focus on the implementation of a
sample of these computing substructures, and show
how they can be used to efficiently map parallel al-
gorithms onto the architecture.

In what follows, the boldface notation i.e. X, Y etc.
denotes a data plane (or a stack of bit planes), and
the italic notation (i.e. X, Y) designates a single bit
plane. The notation A (B or C) +X is interpreted as
data transfer from memory location X to input plane
A (B or C) . The notation Xt Y denotes data transfer
from memory location Y to X. This involves loading
Y, going through the processing unit without any ef-

32

feet, and storing it in .E The notation Cc0 is inter-
preted as loading the C-plane with a zero bit plane
(all entries are 0). Loop indices and parameter cal-
culation such as “for i = a to b” should be interpreted
as control instructions that are executed by the con-
trol unit.

4.1. 2-D addition/subtraction

This substructure refers to the addition (subtrac-
tion) of corresponding elements of two nxn data
planes X and Y of integers. The result is a data plane
S = {Q}, where so = Xi, * y,, for i, j= 1, it. Let X be
an n x n q-bit planes, X,_ , , X,_ 2, X0 where q is the
precision of the operands, X0 being the least signif-
icant and X,_ , being the most significant bit planes
respectively. Similar considerations take place for the
data plane Y, the procedure is as follows

Volume 72, number 1,2 OPTICS COMMUNICATIONS I July 1989

Procedure 2-D Addition(X,Y)
begin

C,--0;
for k : = 0 to q - 1 do

A,--X~;
B~-Y~;
&, Coot.--A~B~C,.;

endfor
s. ,-c;

end 2-D Addition

The notation &, Com,--A~B~Cm, in the above
procedure, designates the addition of bit planes A and
B together with the previous carry Ci.; the sum bit
plane is to be stored in & and the resulting carry bit
plane, Cou, is routed back to input plane C(6",, and
Cou~ represent the same physical location). The pro-
cedure starts by initializing the C-plane to zero, and
loading bit planes Xo, Yo into A-plane and B-plane
respectively. The processing unit applies the full ADD
SS rules simultaneously to the 2-D 3- shuffled plane.
The sum bits are extracted from the output plane
through masking operations and stored in So, and the
carry bits are extracted and fed back to the C-plane
for the next iteration, while the memory unit loads
the bit planes X~ and Y~ in the A-plane and B-plane
respectively. The whole process continues until Xt_
and Yq_ ~ are added and the sum So, S~ Sq stored
as a stack of bit planes in the memory. The addition
of two q-bit planes is done in q iterations, regardless
of the number of operands to be added.

Representation of numbers in two's complement
form allows 2-D subtraction by adding few addi-
tional steps to the 2-D addition procedure. The pair-
wise subtraction of two data planes X, Y is done by
first forming the two's complement of the subtra-
hend Y, then add it to X, using the 2-D addition
substructure.

4.2. 2-D multiplication

This substructure refers to the multiplication of
overlapping elements of two data planes. Let X and
Y be as described previously, then the product P is
a 2q-bit planes P=P2q-te2q-2...eo, where pu=xo×y,j.
This substructure uses the logical AND and the full
ADD operations. The complete procedure is as
follows

Procedure 2-D Multiplication(X,Y)
begin

for k : = 0 to 2 q - 1 do Pk,-0;
for l: = 0 to q-- 1 do

C,-- 0;
for m : = 0 t o q - I do

A ,-- X,,;
B*-- Yg
B,--AAB;
A*--P,,+g
Pro+l, C,--A~B~)C;

endfor
&+,,--C;

endfor
end 2-D Multiplication

The time complexity of the 2-D multiplication is
O(q2), independent of the number of pairs to be
multiplied. Note that, unlike the conventional shift
and add multiplication algorithm, we did not need
to shift the previous partial product to generate the
current one. Instead, we start the addition at the bit
plane corresponding to the amount of shift required.

4.3. 2-D shift

We define two substructures for shifting a data
plane by a variable number of pixels. The shift con-
sidered here is the logical shift, where columns (or
rows) of 0s enter the opposite direction of the shift.
Given P = P q - t P~->..Po, and X=Xq_l Xq_~_...Xo, we
define a horizontal shift substructure, denoted by
H,~(P), to be the data plane P shifted in the X-axis
by a columns (+ ct for positive shift, and - c t for
negative shift). The amount of shift a is applied to
every bit plane P, comprising the data plane P. The
shifted plane can be either stored in itself or in a dif-
ferent memory location, therefore the notation
X,--H~(P) is interpreted as shifting the data plane P
by a columns and storing it in X. Similarly, we de-
fine the vertical shifting operation, denoted by
V,,(P), to be the data plane P shifted along the Y-
axis by a rows (+ a for upward shift, and - a for
downward shift).

4.4. Row accumulation

This refers to calculating the sum of all the ele-
ments of a data plane columnwise. The initial plane

33

Volume 72, number 1.2 OPTICS COMMUNICATIONS 1 July 1989

S is split horizontally (using vertical shifting) into
two planes X and Y, each with half the data entries
of S; next these planes are added using the 2-D ad-
dition procedure. This split and add process is re-
peated for log2n iterations, after which, the first row
of S holds the sums of all the rows of S. In other word,
the elements of each column are accumulated and
stored in the first ent~ ' of each column.

Procedure Row-Sum(S,X,Y)
begin

for k = 1 to log,n do
a:=n/2~;

f l:=Sl-~ (n /2~) ;
X,-- V_~(S);
v ~/~(X):
Y , - -V+, (S) ;
S,-- 2-D Addition (X,Y);

endfor
end Procedure Row-sum

4. 5. Column accumulation

4.6. Matrix multiplication

As an example o f algorithm mapping, we present
a parallel algorithm for matrix multiplication which
is based on the use of the computing substructures
introduced above. Let X and Y be n × n matrices
(assuming same size for simplicity) then their prod-
uct X × Y = Z is an n X n matrix whose elements are
given by

z,j= ~ x,kykj, i , j = l n . (1)
k = l

We assume that the matrix X is stored as n ma-
trices o f size nXn: X n, X"-~ , X ~, where each ma-
trix X' is formed by transposing the ith row of X and
replicating it n times. Put differently, each column
o f X ~ is equal to the ith row of X, for i = 1 , n. Let
Tk be the matrix formed by the 2-D multiplication
of matrices X k and Y, then T~.= {U}, where t,j=xkjy .
for i , j= 1, ..., n. Thus summing the elements of each
column of Tk using the Row-Sum procedure will
produce a matrix say Zk whose first row presents the
kth row of matrix Z:

This substructure refers to the accumulation of the
elements of a data plane rowwise. It is similar to the
Row-Sum substructure, with the exception that the
elements of the data plane are accumulated along the
rows. Initially, the data plane S is split vertically
(using horizontal shifting) into two data planes X
and Y. These planes are then added using the 2-D
addition substructure. The same steps are repeated
for log m iterations, after which the first column of
S contains the accumulated columns.

Procedure Column-Sum(S,X,Y)
begin

for k = 1 to log2n do
¢x:=n/2~;
fl: =E' , -~ (n /2k) ;
X,-- H_~(S) ;
H+~j(X):
Y , - H + , (S) ;
S,--2-D Addition (X,Y);

endfor
end Procedure Column-Sum

Z ~ = ' ~ t ~ , , j = l n , (2)
t = l

where the first row of Zk represents the kth row of
Z and all the other rows are 0s. By repeating these
steps for all values o f k (k = 1, ..., n), we produce n
matrices Zn, Z,,_ ~ , Z~. The first row of each ma-
trix Z, represents the ith row of the final product ma-
trix Z. Each matrix Zk is shifted by l - k rows down-
ward. All the shifted matrices are then added pairwise
to produce the final matrix Z:

Procedure Matrix Multiply(Z,X,Y)
begin

fork:= l t o n d o
T~,-2-D Multiplication(X k, Y);
Z~,- Row Sum(Tk);

endfor
for k := l to n do V¢I_k)(Z~.);
for k: = 1 to n do Z , - 2 - D Addition (Z,Z~);

end Matrix Multiply

The time complexity of the algorithm is
O(n(q log2n+q 2)), where q is the operand length. It
can be seen that the time complexity of the multi-

34

Volume 72, number 1.2 OPTICS COMMUNICATIONS 1 July 1989

plication algorithm is logarithmic in n(O(n log n))
as opposed to cubic in n (O (n 3)) for the conven-
tional triple loop matrix multiplication.

5. Performance analysis

In this section, we estimate the theoretical per-
formance of the optical architecture by evaluating
several performance measures and compare them to
the ones of existing SIMD array processors.

5.1. Asymptotic performance

Hockney and Jesshope [14] have introduced two
parameters (r~, h i / 2) to give a first-order charac-
terization for the asymptotic performance of a par-
allel computing system. The first parameter: r~ gives
a quantitative measure o f the maximum rate of com-
putation in units of equivalent scalar operations per-
formed per second. For an array processing system,
r~ is evaluated as follows [14]

roo=n2t y, (3)

where t, is the time taken to execute one opera-
tion on all the PEs, this is usually taken as the pro-
cessing rate, and n 2 is the total number of PEs. The
half-performance length: n~/2 characterizes the
amount of hardware parallelism in a computer ar-
chitecture. For a nonpipelined array processor, the
factor n ~/2 is defined to be the vector length required
to achieve half the maximum performance (r J 2)
[14]. For an array processing system, nwz is half the
array size nZ/2 [14].

The MPP [15] with an array of 128 X 128 PEs and
10 MHz rate has achieved 6 × 109 8-bit operat ions/
s. The CLIP [16] with a 96 × 96 array and a 25 ~ts
cycle time has achieved 3 .7× 109 bit operations/s.
The ICL DAP [17] with a 6 4 × 6 4 array and 0.2 ~ts
cycle time, was described to achieve 108 32-bit op-
erations/s. The Connection Machine [18] with
65536 PEs and a 0.5 las machine cycle time can
achieve 13 × 10 ~° bit operations/s (the CM-2 model).
For the optical case, if we assume that the processing
unit is formed with NOR-gate arrays [6] of size
1000× 1000, and 100 MHz processing rate, r~o= 10 ~4
bit operations/s.

5.2. Communication and I /0 capabilities

Communicat ion plays a crucial part in determin-
ing the overall system performance. There are many
communicat ion metrics in the literature, we choose
the most widely used for our purposes:

Communication bandwidth is the maximum num-
ber of messages that can be simultaneously ex-
changed in one time step. Hence the bandwidth of
the optical system is O(n2) , since up to n 2 PEs can
send and receive data at a time. The data transmis-
sion in the MPP and the CLIP is one column at a
time, therefore their bandwidth is O (n), the DAP on
the other hand, transmits data in a row-parallel fash-
ion which amounts to the same bandwidth factor
O (n) . The Connection Machine has a maximum
sustained communicat ion bandwidth of O (n 2).

The diameter is the maximum number of com-
munication cycles (or links) needed for any two PEs
to communicate. For the optical case, this factor is
1, since we allow any number of shifts in either di-
rections in one cycle time. The MPP and the DAP
are mesh-connected and therefore have a diameter
of 2 (n - 1). The CLIP has a hexagonal connectivity
and therefore has a diameter o f nx/2. The Connec-
tion Machine, has a diameter of O(log2n).

Broadcasting is the ability to send the value in a
certain PE to all the other PEs. The amount of com-
munication cycles to achieve this is considered a
measured of communication performance. This value
is O (n) for the DAP, MPP, and CLIP, and O(log2n)
for the Connection Machine. As far as the optical
system is concerned, broadcasting a value in one PE
to all other n 2 - 1 PEs can be done in O(log2n) steps.

In current implementations of the MPP and the
CLIP, I / O is handled in column-parallel fashion
while the DAP is row-parallel (data is loaded into
the processing array one column or one row at a
t ime). By contrast with the optical system, I / O ac-
tivities are handled in plane-parallel manner. This
ability gives the optical system an I / O speedup of n,
for an n X n input image, over the MPP, CLIP and
the DAP which could be a tremendous speed ad-
vantage, considering the large potential value o f
n (eventually ! 000). Table 1 summarizes the various
performance measures considered above.

35

Volume 72, number 1.2 OPTICS COMMUNICATIONS

Table 1.
Performance comparison of the optical bit-plane architecture with electronic array processors

1 July 1989

Computing Performance metrics
System

Maximum Parallelism Diameter Bandwidth Broadcasting I/O Cycle time
performance (r~) (n ~) capability (las)

Optical Architecture 1014 bit op/s 500000 1 n-" O(Iog2n) n-" 10 -2
(1000× 10007 PEs (potentially)

MPP (128× 128) 6x 10~ 8-bit op/s 8192 2 n - 2 n O(n) n 10-'

DAP (64X64) 3.7X 10~ 32-bit op/s 2048 2 n - 2 n O(n) n 2Xl0 -~

('LIP (96X96) 3.7X 10' bit op/s 4608 x"2n n O(n) n 25

Connection Machine 13X 10"~bit op/s 32768 O(Iog,n) n 2 O(Iog2n) n-' 5X10- '
(64K PEs)

n 2 = the total number of PEs. (processing array size).
r.,. = the asymptotic performance = processing array size/processing time (Hockney and Jesshopc).
n,, , =amount of hardware parallelism. It is the vector length required to achieve half the maximum performance. In case of array pro-
cessing, half the maximum performance is achieved with half the array size (n2/2) .

6. Conclusions

In th i s c o m m u n i c a t i o n , a para l le l op t i ca l c o m p u t -

ing m o d e l b a s e d on s y m b o l i c s u b s t i t u t i o n is i n t ro -

d u c e d as well as a h i e r a r c h i c a l m a p p i n g t e c h n i q u e

for m a p p i n g para l le l a l g o r i t h m s o n t o it. Severa l nu -

mer i ca l a l g o r i t h m s were m a p p e d o n t o the a r ch i t ec -

ture . In i t ia l t h e o r e t i c a l p e r f o r m a n c e ana lys i s o f the

p r o p o s e d s y s t e m was c o n d u c t e d . T h e ana lys i s has

s h o w n t h a t the op t i ca l a r c h i t e c t u r e has a g rea t po-

t en t i a l for o u t p e r f o r m i n g ex i s t i ng a r r ay p rocessors .

H e n c e , it is an a t t r a c t i v e a l t e r n a t i v e to c u r r e n t c o m -

p u t i n g s y s t e m s for a p p l i c a t i o n s t h a t r equ i r e process -

ing large a m o u n t s o f d a t a at h igh - speed . F u r t h e r -

more . the c o m m u n i c a t i o n f lex ib i l i ty a n d para l le l 1/

0 o f the op t i ca l sys t em s e e m s to be u n m a t c h a b l e by

o t h e r e l e c t r o n i c p rocessors .

References

[1] A. Huang, in: Proc. IEEE Tenth Intern. Optical Computing
Conf., Catalog 83CH 1880-4, 1983, p. 13.

[2] A.A. Sawchuk and T.C. Stand, Proc. IEEE 72 (1984) 758.
[3] J. Tanida and Y. Ichioka, Appl. Optics 25 (1986) 1565.
[4] T.J. Drabik and S.L. Lee, Appl. Optics 25 (1986) 4053.

[5]A. Louri and K. Hwang, in: Proc. 15th Intern. Symp. on
Computer Arch., (Honolulu, Hawaii), IEEE/ACM, 1988.

[6] K.H. Brenner, A. Huang and N. Streibl, Appl. Optics 25
(1986) 3054.

[7] E. Botha, D. Casasent and E. Barnard, Appl. Optics 27
(1988)817.

[8] J.N. Malt and K.H. Brenner, Appl. Optics 27 (1988) 1692.
[9] K. Hwang and A. Loud, Optical multiplication and division

using signed-digit symbolic substitution, Optical
Engineering, special issue on Optical Computing, March
1989, to be published.

[I 0] A.W. Lohmann, Appl. Optics 25 (1986) 1543.
[11] A.D. Fisher and J.N. Lee, in: Proc. SPIE, Optical and Hybrid

Computing 634 (1986) 352.
[121S.D. Smith, Appl. Optics 25 (1986) 1550.
[13] D. Psaltis, J. Yu, X.G. Gu and H. Lee, Technical Digest,

OSA Topical Meeting on Optical Computing, pp. TuA3. I-
TuA3.4, 1987.

[14] R.W. Hockney and C.R. Jesshope, Parallel computers:
architecture, programming and algorithms (Adam Hilger
Ltd., Bristol, 1981).

[15] K.E. Batcher, IEEE Trans. on Computers, C-29 (1980) 83.
[16] M.J. Duff, in: CLIP 4: Special Computer Architecture for

Pattern Recognition, eds. Fu and Ichkana (CRC Press,
1982).

[17] S.F. Reddaway, in: First Annual Symposium on Computer
Architecture, (Florida) IEEE/ACM, 1973, p. 61.

[18] Thinking Machine Corporation, Connection machine model
CM-2 technical summary, Tech. Rep. Series HA87-4,
Thinking Machine Corporation, 1986.

36

