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Abstract. The modified -signed -digit (MSD) number system offers parallel
addition and subtraction of any two numbers, with carry propagation
constrained only between two adjacent digits. Based on MSD addition,
parallel algorithms for multiplication and division are developed in this
paper. The optical implementations of these MSD arithmetic algorithms
are developed on the basis of symbolic substitution (SS). The space- invariant
nature of SS matches well with the parallel nature of the MSD arithmetic
algorithms presented. The potential advantages of using these algorithms
for optical computing include the significant increase in speed, full ex-
ploitation of parallelism, and higher system throughput compared with
existing electronic arithmetic processors. The performance of the pro-
posed optical arithmetic system is analyzed and compared with that of
state -of- the -art electronic counterparts.
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bers; parallel processing; fast multipliers; convergence division; symbolic substi-
tution; performance analysis.
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1. INTRODUCTION
This paper deals with digital optical arithmetic using modified -
signed -digit (MSD) representation. The advantages of optics for
computing have been expounded upon on numerous occasions.)
These include massive parallelism, high temporal and spatial
bandwidth, high processing speed, and noninterfering commu-
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nications. The MSD representation was originally invented by
Avizienis2 and was recently introduced to the optical community
by Drake et al.3 for improving the precision and accuracy of
optical computations. This number system (MSD) uses radix
r = 2 and the digit set {T. ,0,11, where 1 stands for -1. The
introduction of redundancy provides a much weaker interdigit
dependency compared with the strong dependency manifested
by long carry propagation in a conventional number system using
the digit set {0,1 }. As a consequence, carry generated at any
stage is confined within two adjacent digital positions in MSD
code. This makes it possible to perform the addition/subtraction
of any two numbers of arbitrary length in constant time.4

Based on the MSD addition, we have developed parallel
algorithms for multiplication and division. The multiplication
algorithm is generalized from the one introduced by Drake et
al.3 The major difference lies in the means of generating the
partial products and summing them in parallel. We show that
the multiplication of two n -digit numbers can be done in O(log2n)
time by first generating all n partial products simultaneously and
then adding them in a treelike fashion. The parallel generation
of all partial products is done in constant time, independent of
the word length n. It is the adder tree that requires log2n time.
A similar multiplication scheme using the MSD code has been
introduced for VLSI implementation.5 The division algorithm is
generalized from the quadratic convergence division method.6
With the provision of high speed multiplication and parallel
addition, the number of required iterations for convergence di-
vision is reduced to O(log2n), where n is the fraction length.

We use the symbolic substitution (SS) technique for the op-
tical implementation of the arithmetic algorithms. Symbolic sub-
stitution is a parallel processing technique that was introduced
by Huang for performing digital computations on optical data.
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1. INTRODUCTION
This paper deals with digital optical arithmetic using modified- 
signed-digit (MSD) representation. The advantages of optics for 
computing have been expounded upon on numerous occasions. 1 
These include massive parallelism, high temporal and spatial 
bandwidth, high processing speed, and noninterfering commu-
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nications. The MSD representation was originally invented by 
Avizienis2 and was recently introduced to the optical community 
by Drake et al. 3 for improving the precision and accuracy of 
optical computations. This number system (MSD) uses radix 
r = 2 and the digit set {1,0,1}, where T stands for -1. The 
introduction of redundancy provides a much weaker interdigit 
dependency compared with the strong dependency manifested 
by long carry propagation in a conventional number system using 
the digit set {0,1}. As a consequence, carry generated at any 
stage is confined within two adjacent digital positions in MSD 
code. This makes it possible to perform the addition/subtraction 
of any two numbers of arbitrary length in constant time. 4

Based on the MSD addition, we have developed parallel 
algorithms for multiplication and division. The multiplication 
algorithm is generalized from the one introduced by Drake et 
al. 3 The major difference lies in the means of generating the 
partial products and summing them in parallel. We show that 
the multiplication of two n-digit numbers can be done in O(log2n) 
time by first generating all n partial products simultaneously and 
then adding them in a treelike fashion. The parallel generation 
of all partial products is done in constant time, independent of 
the word length n. It is the adder tree that requires Iog2n time. 
A similar multiplication scheme using the MSD code has been 
introduced for VLSI implementation. 5 The division algorithm is 
generalized from the quadratic convergence division method. 6 
With the provision of high speed multiplication and parallel 
addition, the number of required iterations for convergence di 
vision is reduced to O(log2n), where n is the fraction length.

We use the symbolic substitution (SS) technique for the op 
tical implementation of the arithmetic algorithms. Symbolic sub 
stitution is a parallel processing technique that was introduced 
by Huang7 for performing digital computations on optical data.
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It consists of two processing phases: a recognition phase, in
which the presence of a specific pattern is detected within a
binary image, and a substitution phase, in which the present
pattern is replaced by another pattern according to a predefined
SS rule. The left -hand -side pattern of the SS rule, called the
search pattern, is first searched in the input image and then is
replaced by the right -hand side, called the replacement pattern.
Optical implementation of these two SS phases have been in-
vestigated by many researchers.8-14 Substitution rules for con-
ventional binary addition were suggested by Brenner et al.10
However, in Brenner's scheme the addition time is a function
of the operand length owing to carry propagation in the con-
ventional binary number system.

In this paper Sec. 2 presents the SS rules for MSD addition
and subtraction and Sec. 3 discusses the optical implementation
of these SS rules. Sections 4 and 5 respectively describe the
MSD multiplication and division algorithms and their optical
implementation. Section 6 shows optical conversion between
binary numbers and MSD numbers. Section 7 assesses the po-
tential performance of the MSD arithmetic algorithms presented.

2. SS RULES FOR MSD ADDITION AND
SUBTRACTION

Avizienis2 defined three successive steps to perform the addition
of two signed -digit numbers X = xn_1x°.x_ix_2x_,,, and
Y = yn_1yo.y_1y_2y_m. At the first step, xi + yi =
2ti +i + wi is performed at the ith digit position, for i =
- m, ... ,n -1, where wi and ti +1 are called the interim sum digit
and the transfer digit, respectively. These digits assume the
values
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At the second step, wi + ti = 2t;+ 1 + w; is performed to pro-
duce another pair of digits wi and ti +1:

1 ifw;+t;= 1 1

w; = 0 ifIw1 + til # 1, t;+1 = 0
1 ifw;+t;=T 1

if w; + = 2
if kw; + t;l # 2 . (2)
ifwi + t; = -2

The third step generates the final sum digit si:

s; = w; + t; = 0
ifw;+t;%1
ifw;+t;=_0.
ifw;+t;1

(3)

Drake et al.3 proposed the use of holographic elements, prisms,
and optical bistable devices to implement the MSD addition.
Recently, Bocker et a1.15 proposed implementing the MSD ad-
dition and subtraction using optical symbolic substitution. In
addition, several other optical techniques have been suggested
for the implementation of MSD addition and subtraction.16-19

In this paper, we derive the SS rules for optical MSD addition
from Eqs. (1), (2), and (3). These SS rules are similar to those
presented in Ref. 15, the major difference being in the third
stage of the addition and in the use of light intensity for encoding.

Using light intensity, two pixels of different intensity levels
are needed to encode the three digits IT ,0,11. A possible en-
coding scheme is to represent digit 1 by a bright pixel above a

L

r

r,s

L J

r17

J

Fig. 1. Optical SS rules required for MSD addition and subtraction.
(a) Light intensity encoding of the digit set {1,0,1 }. (b) SS rules for
optical MSD addition. (c) SS rules for MSD negation operation.

dark one, digit T by the reverse pattern, and digit 0 by two dark
pixels, as shown in Fig. 1(a). The extra pattern, two bright
pixels, can be used as a delimiter to denote the fraction point.
The advantage of this encoding scheme is that the significant
digits (1 and 1) are encoded in dual -rail coding, which simplifies
the SS recognition phase.10

The light- intensity-coded SS rules for MSD addition are shown
in Fig. 1(b). On the surface it seems that we need 33 = 27 SS
rules corresponding to the nine input combinations at each stage
of the addition process. A closer look at the logic of the second
and third stages reveals that fives entries are identical; further-
more, if we pad the last stage output with 0, five out of the nine
entries of this last stage become identical to some entries in
stages 2 and 3. Therefore, the total number of required SS rules
becomes 17 using the encoding scheme presented in this paper.
MSD subtraction is performed by first negating the nonzero digits
of the subtrahend and then performing the addition of the two
operands.2 The digit negation requires two more SS mles, shown
in Fig. 1(c).

3. OPTICAL IMPLEMENTATION OF SS RULES
The SS rules presented in this paper can be implemented using
an additive process (image superimposition): the replicate - shift-
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It consists of two processing phases: a recognition phase, in 
which the presence of a specific pattern is detected within a 
binary image, and a substitution phase, in which the present 
pattern is replaced by another pattern according to a predefined 
SS rule. The left-hand-side pattern of the SS rule, called the 
search pattern, is first searched in the input image and then is 
replaced by the right-hand side, called the replacement pattern. 
Optical implementation of these two SS phases have been in 
vestigated by many researchers. 8'14 Substitution rules for con 
ventional binary addition were suggested by Brenner et al. 
However, in Brenner's scheme the addition time is a function 
of the operand length owing to carry propagation in the con 
ventional binary number system.

In this paper Sec. 2 presents the SS rules for MSD addition 
and subtraction and Sec. 3 discusses the optical implementation 
of these SS rules. Sections 4 and 5 respectively describe the 
MSD multiplication and division algorithms and their optical 
implementation. Section 6 shows optical conversion between 
binary numbers and MSD numbers. Section 7 assesses the po 
tential performance of the MSD arithmetic algorithms presented.

2. SS RULES FOR MSD ADDITION AND 
SUBTRACTION
Avizienis2 defined three successive steps to perform the addition 
of two signed-digit numbers X = xn -1   * * XQ. x _ i x - 2   *   x - m and 
V = yn -i---yo.y-iy-2"-y-m. At the first step, xi + yi = 
2ti + i + wi is performed at the ith digit position, for i = 
- m,... ,n   1, where Wi and ti +1 are called the interim sum digit 
and the transfer digit, respectively. These digits assume the 
values

( 1 if Xi + ^ = I fl if ^ + ^ ^ 1
0 if |xi + yi| * 1 , ti+i = <0 if Xi + yi = 0 . (1)
1 if Xi + yi = 1 [l if * + yi^ 1

At the second step, wi + ti = 2ti+1 + Wi is performed to pro 
duce another pair of digits wj and tj+i:

( 1 if Wi + ti = 1 fl if Wi + ti = 2
0 if | Wi + ti| *_1 , t|+i = JO if |wi + ti| * 2 .
1 if Wi + ti = 1 [l if wj + ti = -2

The third step generates the final sum digit sj:

( 1 if w| + ti ^ 1
0 if wj + tj = 0
1 if wi -f ti ^ 1

(2)

(3)

Drake et al. 3 proposed the use of holographic elements, prisms, 
and optical bistable devices to implement the MSD addition. 
Recently, Bocker et al. 15 proposed implementing the MSD ad 
dition and subtraction using optical symbolic substitution. In 
addition, several other optical techniques have been suggested 
for the implementation of MSD addition and subtraction. 16"19 
In this paper, we derive the SS rules for optical MSD addition 
from Eqs. (1), (2), and (3). These SS rules are similar to those 
presented in Ref. 15, the major difference being in the third 
stage of the addition and in the use of light intensity for encoding. 

Using light intensity, two pixels of different intensity levels 
are needed to encode the three digits {1,0,1}. A possible en 
coding scheme is to represent digit 1 by a bright pixel above a
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Fig. 1. Optical SS rules required for MSD addition and subtraction, 
(a) Light intensity encoding of the digit set {1,0,1}. (b) SS rules for 
optical MSD addition, (c) SS rules for MSD negation operation.

dark one, digit 1 by the reverse pattern, and digit 0 by two dark 
pixels, as shown in Fig. l(a). The extra pattern, two bright 
pixels, can be used as a delimiter to denote the fraction point. 
The advantage of this encoding scheme is that the significant 
digits (1 and 1) are encoded in dual-rail coding, which simplifies 
the SS recognition phase. 10

The light-intensity-coded SS rules for MSD addition are shown 
in Fig. l(b). On the surface it seems that we need 33 = 27 SS 
rules corresponding to the nine input combinations at each stage 
of the addition process. A closer look at the logic of the second 
and third stages reveals that fives entries are identical; further 
more, if we pad the last stage output with 0, five out of the nine 
entries of this last stage become identical to some entries in 
stages 2 and 3. Therefore, the total number of required SS rules 
becomes 17 using the encoding scheme presented in this paper. 
MSD subtraction is performed by first negating the nonzero digits 
of the subtrahend and then performing the addition of the two 
operands. 2 The digit negation requires two more SS rules, shown 
in Fig. l(c).

3. OPTICAL IMPLEMENTATION OF SS RULES
The SS rules presented in this paper can be implemented using 
an additive process (image super-imposition): the replicate-shift-
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Fig. 2. Optical implementation of SS rules using multichannel acousto-
optic cells. (a) Recognition phase using acousto -optic cells, LEDs,
and detectors. (b) Substitution phase using LEDs and a 2 -D array of
shift detectors.

superimpose -threshold- mask -combine implementation method
presented in Ref. 10 with a fan-in and fan-out of three.1o,2°
Although it exploits space parallelism very effectively (several
operands can be encoded on the input plane and processed at
once), this implementation method relies on the use of 2 -D arrays
of optical logic gates (the inverting NOR -gate array in
the recognition phase10), which should be reasonably large
(1000 x 1000 gates). However, such components are at an em-
bryonic stage,21 at least for the desired size. Alternatively, one
can implement the SS rules presented here using a multiplicative
process and available optical devices. Botha et al.8 have recently
introduced an implementation method based on presently avail-
able optical devices such as light emitting diodes (LEDs) and
multichannel acousto -optic (AO) cells and detectors. The method
was intended for the implementation of the ripple carry addition
rules.10 We extend the optical setup to implement the optical
MSD addition and subtraction.

The recognition phase is shown in Fig. 2(a). The search
patterns are introduced through the LEDs. The reference plane
consists of nine columns, corresponding to nine possible com-
binations of the digit set {TA 1}. Each column contains four
LEDs corresponding to the four pixels required to encode the
operand digits. During the recognition, the input operands are
fed to the multichannel AO cells, and the reference patterns are
input through the LEDs. A multiplication of the reference pat-
terns and the input operands takes place in the AO cells; the
result is integrated onto the detectors. There are nine detectors,
each corresponding to one of the nine search patterns at each
stage of the optical addition. A peak signal on the output de-
tectors indicates the presence in time of the searched pattern.

366 / OPTICAL ENGINEERING / April 1989 / Vol. 28 No. 4

The substitution phase is implemented by the optical setup
shown in Fig. 2(b). The output of the detectors of the recognition
phase are used to scribe the desired substitution symbol on the
LEDs situated in plane 1. The light emitted from the LEDs is
imaged onto the array of shift detectors shown in plane 2. The
size of this detector array is n x 4, where n is the operand length
and the factor 4 corresponds to the encoding scheme (two pixels
per digit). The right end of the detector array is fed back to the
AO cells for the next iteration. This implementation method
does not rely on future optical components. All of the optical
components required (LEDs, AO cells, detectors) are highly
developed. With AO cells operating at gigahertz speed, this
method may provide a very fast optical arithmetic processor,
given that the response time of the detectors (for both the rec-
ognition and substitution phases) is made comparable with the
rate of the AO cells. Its drawback is the limited number of
operands that can be processed in parallel (within a reasonable
hardware cost). Four AO cells are required to process two op-
erands in parallel. To process N operands simultaneously, N x 4
AO cells are needed. For the rest of the paper, the additive
implementation method is assumed, for it offers much more
parallelism than the multiplicative one, despite the unavailability
of the devices (NOR -gate arrays) that are required for its im-
plementation.

4. PARALLEL MSD MULTIPLICATION

The multiplication of two signed -digit (SD) numbers X =
xn- l...xo x- ix- -m and Y = yn- ly- -m
produces an SD product:

P = P2n-1P2n-2"Pop-1P-2''P-2m+1p-2m

= (Yn -1 * X) X 2n +m -1 + ... +

x 21 + (Y -m * X) x 2° , (4)

where yi is the ith multiplier digit. The asterisk represents the
signed AND operation that is defined below for any two SDs
x,y E {1,0,1 }:

if(x=Y= 1)V(x=y= 1)
if (x = 0) V(y =_0)
if (x = 1 Ay = 1)\/(x = 1 /y = 1)

(5)

The notations y and A represent the conventional logical OR
and logical AND operations. The notation yj * X defines the
digitwise operations:

Yi*X = Yi*xn-1,Yi*xn-2,...,Yi*x-m (6)

We have previously developed a sequential algorithm for com-
puting the product P in n + m iterations using MSD additions
and right shifts.22 In the following, we present a parallel algo-
rithm that computes the product of two MSD numbers in
log2(n + m) iterations, where (n + m) is the word length including
n integer digits and m fraction digits. For clarity, we consider
only integer numbers where the fraction length m = O.

4.1. MSD multiplication algorithm

Step 1. Given two signed n -digit numbers, generate all n partial
products simultaneously, each having length n:

HWANG, LOURI

Search Patterns Multichannel acousto-optic 
cells i

LEDs

Input operands (electrical signals)

(a)

Replacement pattern ,-XTo acousto-optic cells 

for the next stage 
computation

Plane 1 : LEDs Imaging 
optics

Plane 2 : 2-D array of shift 
detectors

(b)

Fig. 2. Optical implementation of SS rules using multichannel acousto- 
optic cells, (a) Recognition phase using acousto-optic cells, LEDs, 
and detectors, (b) Substitution phase using LEDs and a 2-D array of 
shift detectors.

superimpose-threshold-mask-combine implementation method 
presented in Ref. 10 with a fan-in and fan-out of three. 10 ' 20 
Although it exploits space parallelism very effectively (several 
operands can be encoded on the input plane and processed at 
once), this implementation method relies on the use of 2-D arrays 
of optical logic gates (the inverting NOR-gate array in 
the recognition phase 10), which should be reasonably large 
(1000 x 1000 gates). However, such components are at an em 
bryonic stage,21 at least for the desired size. Alternatively, one 
can implement the SS rules presented here using a multiplicative 
process and available optical devices. Botha et al. 8 have recently 
introduced an implementation method based on presently avail 
able optical devices such as light emitting diodes (LEDs) and 
multichannel acousto-optic (AO) cells and detectors. The method 
was intended for the implementation of the ripple carry addition 
rules. 10 We extend the optical setup to implement the optical 
MSD addition and subtraction.

The recognition phase is shown in Fig. 2(a). The search 
patterns are introduced through the LEDs. The reference plane 
consists of nine columns, corresponding to nine possible com 
binations of the digit set {1,0,1}. Each column contains four 
LEDs corresponding to the four pixels required to encode the 
operand digits. During the recognition, the input operands are 
fed to the multichannel AO cells, and the reference patterns are 
input through the LEDs. A multiplication of the reference pat 
terns and the input operands takes place in the AO cells; the 
result is integrated onto the detectors. There are nine detectors, 
each corresponding to one of the nine search patterns at each 
stage of the optical addition. A peak signal on the output de 
tectors indicates the presence in time of the searched pattern.

The substitution phase is implemented by the optical setup 
shown in Fig. 2(b). The output of the detectors of the recognition 
phase are used to scribe the desired substitution symbol on the 
LEDs situated in plane 1. The light emitted from the LEDs is 
imaged onto the array of shift detectors shown in plane 2. The 
size of this detector array is n x 4, where n is the operand length 
and the factor 4 corresponds to the encoding scheme (two pixels 
per digit). The right end of the detector array is fed back to the 
AO cells for the next iteration. This implementation method 
does not rely on future optical components. All of the optical 
components required (LEDs, AO cells, detectors) are highly 
developed. With AO cells operating at gigahertz speed, this 
method may provide a very fast optical arithmetic processor, 
given that the response time of the detectors (for both the rec 
ognition and substitution phases) is made comparable with the 
rate of the AO cells. Its drawback is the limited number of 
operands that can be processed in parallel (within a reasonable 
hardware cost). Four AO cells are required to process two op 
erands in parallel. To process N operands simultaneously, N x 4 
AO cells are needed. For the rest of the paper, the additive 
implementation method is assumed, for it offers much more 
parallelism than the multiplicative one, despite the unavailability 
of the devices (NOR-gate arrays) that are required for its im 
plementation.

4. PARALLEL MSD MULTIPLICATION
The multiplication of two signed-digit (SD) numbers X =
Xn-r"Xo.x-ix-2"'X_ m 
produces an SD product:

and Y = yn -r"yo.y-iy-2"-y-i

p2n-lp2n-2"'PO-p-lp-2'"p-2m+lp-2m

(Vn-! * X) x 2n+m - 1 + - + (y_ m+1 * X) 

x 2 1 + (y_ m * X) x 2° , (4)

where yi is the ith multiplier digit. The asterisk represents the 
signed AND operation that is defined below for any two SDs 
x,yG {1,0,1}:

if (X = y = 1) V (X = y = 1)

x*y = <JO if(x = 0)V(y =_0)
if (x = 1 A y = 1) V (x = 1 A y =

(5)
1)

The notations V and A represent the conventional logical OR 
and logical AND operations. The notation yj * X defines the 
digitwise operations:

X = yj * xn _i, ^ * xn _ 2 , * x_ B (6)

We have previously developed a sequential algorithm for com 
puting the product P in n + m iterations using MSD additions 
and right shifts. 22 In the following, we present a parallel algo 
rithm that computes the product of two MSD numbers in 
Iog2(n + m) iterations, where (n + m) is the word length including 
n integer digits and m fraction digits. For clarity, we consider 
only integer numbers where the fraction length m = 0.

4.1. MSD multiplication algorithm
Step 1. Given two signed n-digit numbers, generate all n partial 
products simultaneously, each having length n:
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TABLE I. Example of parallel multiplication of 2 four -digit numbers.

..
rxo

ß6

%

ß1

...
r]e

Step 1: Generation of the partial products

Po,o= Y -3 *X= 1.011
Po,1 =Y -2 *X =1.011
Po,2 =y -1 *X =0.000
Po,3 =Yo *X= 1.011

Step 2: Shifting of the partial products

(y -3 * X) x 2° = 0001011
(y-2* X) x 21 = 0010110
(y -1* X) x 22 = 0000000
(yo * X) x 23 = 1011000

Step 3: Summation of the shifted partial products

000101 1
00000111

0010110

000.100101
0000000

11 101000
101 1000 -

X x Y = Z = (000.100101)so = (0.546875)io

Po,i = yi * X for j = 0,...,n - 1 , (7)

where the term Po,j, an n -digit number, represents the jth partial
product.

Step 2. Introduce the necessary shifts for each partial product.
Each initial partial product Po,i will be shifted j digits to the left,
corresponding to the weight factor 21 shown in Eq. (4):

Po,i = yi * X x 21 for j = 0,...,n- 1 , (8)

Step 3. Pairwise add all partial products by means of an adder
tree. With a total of n partial products at the leaves of the tree,
the summation process takes lo$2n steps. At each step i, we
perform n/2' SD additions in parallel:

= PI- 1,2i- 2 + PI- 1,2i -1 for j= 1,2,...,n/2 , i= 1,...,lo$2n . (9)

The final product is produced at the root of the binary tree. Steps
1 and 2 are carried out in constant time. For a multiplier of
length n, step 3 requires log2n iterations. Since each MSD ad-
dition takes constant time, the multiplication of two n -digit MSD
numbers can be carried out in O(log2n) time. Table I shows the
parallel multiplication of two four -digit MSD numbers, X =
(1.01 1)sD = (0.375)10 and Y = (1.011)sD = (0.875)10. In
step 1, we generate all of the partial products using Eq. (7). In
step 2, we introduce the necessary shifts. Finally, we add all of
the shifted partial products using Eq. (9) and use a tree of SD
adders to produce the final product P = 000.100101 =
(0.546875)1o.

4.2. Optical implementation of the MSD multiplication

The MSD multiplication algorithm uses the signed AND oper-
ation ( *) to generate all partial products simultaneously and a
tree of MSD additions to sum them. Using Eq. (5), we derive
the SS rules needed for implementing the * operation, as shown
in Fig. 3. Let us consider the optical implementation of the
computations involved in Table I. The multiplicand and multi-

f]]

%
%

]]
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Fig. 3. Optical SS rules needed for the MSD AND operation.

Multiplicand

001:1 00
0000

000 0000
0 10000

Plane MI

00°0;010:10
0100,0000

10°
Multiplier Lena L2 Plane M2 2 -D perfect shuffle of

planes Ml and M2

Fig. 4. Optical spreading of the operands for parallel MSD multipli-
cation.

plier are arranged in 1 -D arrays, as shown at the left in Fig. 4.
The multiplicand is shown horizontally, and the multiplier is
shown vertically. The generation of all partial products Po,i for
j = 0,...,3 is carried out in three stages. First, the multiplicand
is spread out vertically by anamorphic optics (represented by
lens L1 in Fig. 4) to fill the 4 x 4 data plane M1. Similarly, the
multiplier is spread out horizontally so that each digit of the
multiplier is duplicated vertically four times to fill the 4 x 4 plane
M2. Next, planes M1 and M2 are 2 -D perfect shuffled12 and
then stored in an 8 x 4 plane R. For clarity, the optics required
for the 2 -D perfect shuffle permutations are omitted from Fig.
4. The 2 -D shuffle permutations intended here affect only the
row position, leaving the column position of the data unchanged.
Optical means of implementing the 2 -D perfect shuffle have
been suggested elsewhere, 12,23,24

The resulting image R has alternating rows from M1 and M2
such that odd rows contain the multiplicand and even rows con-
tain a replicated digit of the multiplier. Therefore, rows 1, 3,
5, ..., n - 1 contain the multiplicand X; rows 2, 4, 6, ..., n
contain the replicated digits yl,y2,y3,...,yn -1 of the multiplier,

OPTICAL ENGINEERING / April 1989 / Vol. 28 No. 4 / 367

OPTICAL MULTIPLICATION AND DIVISION USING MODIFIED-SIGNED-DIGIT SYMBOLIC SUBSTITUTION

TABLE I. Example of parallel multiplication of 2 four-digit numbers.

Step 1: Generation of the partial products
Po,o = Y-3*X = 1.0TT
PO/I = y-2*X = T.011
Po,2 = y-i *X = 0.000
PO,S = Yo*X = 1.0TT 

Step 2: Shifting of the partial products

(y-s*X) x 2° = 0001OTT
(y- 2 *X) x 2 1 = OOT0110
(y-T *X) x 22 = 0000000
(yo * X) x 23 = 10TTOOO 

Step 3: Summation of the shifted partial products

00010TT -—— ^^
——^QQQQQI 11 

0010110 ————~~~

0000000
•11101000

000.100101

1011000- 

X x Y = Z = (000.1001 OT)SD = (0.546875) 10

POJ = yj *X forj = 0,...,n-l , (7)

where the term PO,J, an n-digit number, represents the ]th partial 
product.

Step 2. Introduce the necessary shifts for each partial product. 
Each initial partial product PO,J will be shifted j digits to the left, 
corresponding to the weight factor 2* shown in Eq. (4):

POJ = yj*X x 2j forj = 0,...,n-l , (8)

Step 3 . Pairwise add all partial products by means of an adder 
tree. With a total of n partial products at the leaves of the tree, 
the summation process takes Iog2n steps. At each step i, we 
perform n/21 SD additions in parallel:

i=l,...,log2n . (9)

The final product is produced at the root of the binary tree. Steps 
1 and 2 are carried out in constant time. For a multiplier of 
length n, step 3 requires Iog2n iterations. Since each MSD ad 
dition takes constant time, the multiplication of two n-digit MSD 
numbers can be carried out in O(log2n) time. Table I shows the 
parallel multiplication of two four-digit MSD numbers, X = 
(1.01 1)SD = (0.375)io and Y = (1.01 1)SD = (0.875)i0 . In 
step 1, we generate all of the partial products using Eq. (7). In 
step 2, we introduce the necessary shifts. Finally, we add all of 
the shifted partial products using Eq. (9) and use a tree of_SD 
adders to produce the final product P = 000.100101 = 
(0.546875)io.

4.2. Optical implementation of the MSD multiplication

The MSD multiplication algorithm uses the signed AND oper 
ation (*) to generate all partial products simultaneously and a 
tree of MSD additions to sum them. Using Eq. (5), we derive 
the SS rules needed for implementing the * operation, as shown 
in Fig. 3. Let us consider the optical implementation of the 
computations involved in Table I. The multiplicand and multi-

Fig. 3. Optical SS rules needed for the MSD AND operation.

Multiplicand

Plane R

Multiplier Lens L2
2-D perfect shuffle of 
planes Ml and M2

Fig. 4. Optical spreading of the operands for parallel MSD multipli 
cation.

plier are arranged in 1-D arrays, as shown at the left in Fig. 4. 
The multiplicand is shown horizontally, and the multiplier is 
shown vertically. The generation of all partial products PO,J for 
j = 0,...,3 is carried out in three stages. First, the multiplicand 
is spread out vertically by anamorphic optics (represented by 
lens LI in Fig. 4) to fill the 4 x 4 data plane Ml. Similarly, the 
multiplier is spread out horizontally so that each digit of the 
multiplier is duplicated vertically four times to fill the 4 x 4 plane 
M2. Next, planes Ml and M2 are 2-D perfect shuffled12 and 
then stored in an 8x4 plane R. For clarity, the optics required 
for the 2-D perfect shuffle permutations are omitted from Fig.
4. The 2-D shuffle permutations intended here affect only the 
row position, leaving the column position of the data unchanged. 
Optical means of implementing the 2-D perfect shuffle have 
been suggested elsewhere. 12 '23 '24

The resulting image R has alternating rows from Ml and M2 
such that odd rows contain the multiplicand and even rows con 
tain a replicated digit of the multiplier. Therefore, rows 1,3,
5. ..., n-1 contain the multiplicand X; rows 2, 4, 6, ..., n 
contain the replicated digits yi,V2,y3,...,yn -i of the multiplier,
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Fig. 5. Parallel generation of all partial products using the SS rules
of the MSD AND operation.

respectively. In the third stage, plane R is replicated nine times;
each copy is used for applying one SS rule of the * operation.
Therefore, every combination of the input operands is searched
and replaced in parallel. Finally, the output planes of all of the
SS rules applied are optically superimposed. To this end, all of
the partial products have been generated in parallel as shown in
plane P of Fig. 5.

Step 2 of the SD multiplication algorithm, shifting of the
initial partial products, can now be performed. There are a va-
riety of ways one can perform spatial shifts in optics. Figure
6(a) shows four possible methods for spatially shifting an op-
tically encoded SD number. All of these methods can be ex-
tended to 2 -D arrays, considering the ease with which optical
systems can spread their hardware into two and three dimensions.
From a reliability point of view, the holographic method may
be the most reliable one for our application.25

Using the holographic method, we need a holographic ele-
ment consisting of four subholograms. One subhologram with
a fan -out of one can be used to shift one partial product. Within
each subhologram, the input/output interconnections are space
invariant since every pixel of a particular partial product is shifted
by the same amount to the left. The holographic element as a
whole is considered space variant since the interconnection pat-
terns differ for each row. Figure 6(b) illustrates the parallel
shifting of all partial products via the holographic element H,
which consists of four subholograms. When illuminated by its
corresponding partial product, each subhologram of H will re-
construct a shifted partial product on the plane S as shown. The
plane S, consisting of all shifted partial products, is then fed to
the MSD adder described in the previous section to perform the
last step of the multiplication algorithm. This is accomplished
by applying the MSD addition rules for log24 = 2 iterations.

In general, with a multiplicand of length n and a multiplier
of length m, the planes M1, M2, and P are all m x n arrays,
R is a 2m x n array, and S is an m x (m +n) array. It should
be noted that if the 1 -D arrays used to input the operands in Fig.
4 are replaced by 2 -D arrays and associated optics for spreading
and shuffling, many operand pairs can be multiplied in parallel
using the same set of SS rules.
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Fig. 6. Optical means for achieving spatial shifts and the shift of the
partial products using holographic element H. (a) Optical methods
for achieving spatial shifting. (b) Parallel shift of partial products
using a hologram.

5. MSD CONVERGENCE DIVISION

The conventional restoring and nonrestoring division methods
require knowledge of the sign of the partial remainder for exact
selection of the quotient digits.4 However, in MSD represen-
tation the sign of a partial remainder is not readily available if
several most -significant digits are zero. This difficulty prevents
the use of conventional methods for MSD division. In searching
for an effective division algorithm for SD numbers with radix
r = 2, we have to meet the following requirements: (1) The
algorithm should overcome the difficulty of testing the polarity
of the remainder after each iteration, (2) it should make effective
use of the parallel MSD addition and multiplication schemes
developed in previous sections, and (3) it should take full ad-
vantage of the massive parallelism and high speed of optics.

An MSD division algorithm satisfying these goals is devel-
oped here based on a convergence approach. Division by con-
vergence is not a new idea. In fact, several convergence division
schemes have been implemented with conventional binary num-
bers.4,26,27 We extend the convergence method to achieve par-
allel division of signed -digit numbers.

Let us consider a dividend X and a divisor Y, both MSD
fractions in normalized form; that is,

1/2 IX' < Y < 1 . (10)

We want to compute the quotient Q = X/Y without a re-
mainder. The algorithm uses a sequence of multiply factors

,mn such that Y x 0:8mi) converges to 1 (within
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Fig. 5. Parallel generation of all partial products using the SS rules 
of the MSD AND operation.

respectively. In the third stage, plane R is replicated nine times; 
each copy is used for applying one SS rule of the * operation. 
Therefore, every combination of the input operands is searched 
and replaced in parallel. Finally, the output planes of all of the 
SS rules applied are optically superimposed. To this end, all of 
the partial products have been generated in parallel as shown in 
plane P of Fig. 5.

Step 2 of the SD multiplication algorithm, shifting of the 
initial partial products, can now be performed. There are a va 
riety of ways one can perform spatial shifts in optics. Figure 
6(a) shows four possible methods for spatially shifting an op 
tically encoded SD number. All of these methods can be ex 
tended to 2-D arrays, considering the ease with which optical 
systems can spread their hardware into two and three dimensions. 
From a reliability point of view, the holographic method may 
be the most reliable one for our application. 25

Using the holographic method, we need a holographic ele 
ment consisting of four subholograms. One subhologram with 
a fan-out of one can be used to shift one partial product. Within 
each subhologram, the input/output interconnections are space 
invariant since every pixel of a particular partial product is shifted 
by the same amount to the left. The holographic element as a 
whole is considered space variant since the interconnection pat 
terns differ for each row. Figure 6(b) illustrates the parallel 
shifting of all partial products via the holographic element H, 
which consists of four subholograms. When illuminated by its 
corresponding partial product, each subhologram of H will re 
construct a shifted partial product on the plane S as shown. The 
plane S, consisting of all shifted partial products, is then fed to 
the MSD adder described in the previous section to perform the 
last step of the multiplication algorithm. This is accomplished 
by applying the MSD addition rules for Iog24 = 2 iterations.

In general, with a multiplicand of length n and a multiplier 
of length m, the planes Ml, M2, and P are all m x n arrays, 
R is a 2m x n array, and S is an m x (m + n) array. It should 
be noted that if the 1-D arrays used to input the operands in Fig. 
4 are replaced by 2-D arrays and associated optics for spreading 
and shuffling, many operand pairs can be multiplied in parallel 
using the same set of SS rules.
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Fig. 6. Optical means for achieving spatial shifts and the shift of the 
partial products using holographic element H. (a) Optical methods 
for achieving spatial shifting, (b) Parallel shift of partial products 
using a hologram.

5. MSD CONVERGENCE DIVISION
The conventional restoring and nonrestoring division methods 
require knowledge of the sign of the partial remainder for exact 
selection of the quotient digits.4 However, in MSD represen 
tation the sign of a partial remainder is not readily available if 
several most-significant digits are zero. This difficulty prevents 
the use of conventional methods for MSD division. In searching 
for an effective division algorithm for SD numbers with radix 
r = 2, we have to meet the following requirements: (1) The 
algorithm should overcome the difficulty of testing the polarity 
of the remainder after each iteration, (2) it should make effective 
use of the parallel MSD addition and multiplication schemes 
developed in previous sections, and (3) it should take full ad 
vantage of the massive parallelism and high speed of optics.

An MSD division algorithm satisfying these goals is devel 
oped here based on a convergence approach. Division by con 
vergence is not a new idea. In fact, several convergence division 
schemes have been implemented with conventional binary num 
bers.4 '26 '27 We extend the convergence method to achieve par 
allel division of signed-digit numbers.

Let us consider a dividend X and a divisor Y, both MSD 
fractions in normalized form; that is,

|X| < Y < 1 . (10)

We want to compute the quotient Q = X/Y without a re 
mainder. The algorithm uses a sequence of multiply factors 
mo,mi ,ni2,... ,mn such that Y x (11118mO converges to 1 (within
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TABLE II. MSD convergence division example.

Iteration Multiply
step factor

i =0 mo = 2 -Yo
(1.01)so
(1.25)10

i = 1 m1 = 2 -Yo x mo
(1.0011)sD

= (1.0625)10

i = 2 m2 = 2 - Yo x m0 x mi
(1.0000001)so
(1.00390625)10

Accumulated
denominator

Yi=Yoxmo
(1.0001)sD

(0.9375)l0

Y2=YoxmOx
(1.0000001)so

= (0.99509)io

Y3=Yoxmoxmi X 111
(1.0000000000000001)sD

Y3-> 1

mi

Accumulated
numerator

Xi=Xoxmo
(0.1 110)sD

= (-0.625)l0
X2=Xox MO mi

(1.11101 110)sD

= (0.66406)10
X3 = X0 X mo X m1 X m2
Q = (1.111011101111111)so

= (-0.6666..)io

Xo

Negation
SS rules

f,-. Addition

SS rules

+r

in; =2+}i

N- channel for
Numerator X; +r
multiplication

Q

rr4 D n for
JlDenominator

Y, multiplication

Fig. 7. Optical MSD convergence divider using two channels of op-
tical multipliers.

an acceptable error criterion). Initially, we set Xo = X and Yo
= Y. The algorithm repeats the following recursions,

Xi +1 =X;xmi , Yi +1= Y;xmi, (11)

such that for small n

Yx ( , Q =XX ('"mi) . (12)

The effectiveness of this convergence method relies on the ease
of computing the multiply factors mi using only MSD addition
and multiplication operations. The recursive formula of Eq. (11)
can be rewritten as

Yi+t = Yi x mi = f(Yi) . (13)

We desire the function f(Yi) to converge to 1, starting from an
initial value Yo = Y. Equation (13) can be rewritten in a po-
lynomial form:

f(Yi) Y1 = 0 . (14)

Flynn26 described several iterative methods to enable such a
polynomial to converge to a given value, say k. We are interested
only in the quadratic convergence since this appears more con-
venient for optical realization.20 To achieve this, let us rewrite
Eq. (14) in a more general quadratic form:

f(Yi) Yi = (Yi k1)(Y; k2) = 0 . (15)

One of the roots of Eq. (15) should be 1. Krishnamurthy27 found
that for f(Yi) to converge quadratically to 1 the factors mi should
be selected as

mi = 2 - Yi , O<Yi<2 . (16)

Equation (16) implies that the multiply factor for each iteration
can be easily obtained as the two's complement of the previous
denominator Yi. In MSD code, the arithmetic expression 2
Yi can be computed in constant time using SS rules for MSD
negation and addition. Since the convergence is quadratic, the
accumulated denominator length is doubled after each iteration.
Hence, for a desired quotient of length n, the maximum number
of iterations needed is log2n. The complete MSD division al-
gorithm is as follows:

begin

for i := 0 to (logen) - 1 do
mi := 2 - Yi ;
Xi+ 1 : = Xi X mi

Yi+ 1 : = Yi X mi

endfor;

Q : = X(logZn) - 1 ;

end.

Table II illustrates the MSD convergence division of X =
(0.10)sD = (- 0.5)ío by Y = (0.11)sD = (0.75)10. For 16-
digit precision, the method generates the quotient after three
iterations, Q = (1.11101 1 101 111111)sD = ( - 0.66664)10.

Each iteration of the MSD division consists of three major
operations: a pair of MSD multiplications, Y; +1 = Y; x m;
and X1 +1 = X; x m;, and a two's complement operation m;
= 2 Yi. Each MSD multiplication can be carried out optically
as described in Sec. 4. The two's complement is carried out by
a negation operation followed by an addition operation. The
subtrahend Yi is negated using the SS rules in Fig. 1(c). All
nonzero digits of Yi are negated in parallel. The expression 2

Y; then becomes 2 + Y;, which is computed using the MSD
addition rules in Fig. 1(b). The two MSD multiplications re-
quired to generate Xi + and Yi +1 can be computed concurrently
by replicating the MSD multiplication hardware into two chan-
nels, one for the numerator and one for the denominator, as
shown in Fig. 7.

6. CONVERSION BETWEEN BINARY AND MSD
REPRESENTATIONS

When the operands are in binary form, we must (1) convert them
to MSD representation, (2) perform arithmetic operations using
the parallel algorithms presented here, and (3) convert the result
back to binary representation, as shown in Fig. 8(a).
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TABLE II. MSP convergence division example.

Iteration Multiply 
step factor

i = 0 m0 = 2 - Yo 
d.ODso 

= (1.25)io 
i = 1 m-i = 2 - Yo x mo 

(1.001T)SD 
= (1.0625)io 

i = 2 m2 = 2 - Yo x mo x mi 
(1. 0000001 ) SD 

= (1.00390625)io

•y

YQ ** » Negation Yt Addition

SS rules SS rules

Xi »N-

m, Nu 
mt

m, = 2 + y;

m,-   * D- 
» n«

Yi mi

Accumulated Accumulated 
denominator numerator

YI = YO x mo X-] = XQ x mo
(1.000T)sD (O.TT10)SD

= (0.9375)io = (-0.625)io 
Y2 = Yo x m0 x mi X2 = Xo x m0 x mi 

( 1 .OOOOOODso (T. 1 T1 OTT1 0)SD 
= (0.99509)io = (0.66406) 10 

Ya = YO x mo x mi x nri2 Xs = Xo x mo x mi x rri2 
(l.OOOOOOOOOOOOOOOT)so Q = (T.1T10TT10TT1T1T1)SD 

Y3 -> 1 = (- 0.6666.. )io

I mi = 2 - Vi , 0 < Yi < 2 . (16)
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merator _x*+i Equation (16) implies that the multiply factor for each iteration 
implication can ^e easiiy obtained as the two's complement of the previous

denominator Yi. In MSD code, the arithmetic expression 2 - 
YI can be computed in constant time using SS rules for MSD 

     - negation and addition. Since the convergence is quadratic, the
channel for ^+l accumulated denominator length is doubled after each iteration. 
nominator Hence, for a desired quotient of length n, the maximum number 
implication) of iterations needed is Iog2n. The complete MSD division al-

gorilhm is as follows:
Fig. 7. Optical MSD convergence divider using two channels of op 
tical multipliers.

an acceptable error criterion). Initially, we set Xo = X and Yo 
= Y. The algorithm repeats the following recursions,

Xi+ i = x mi

such that for small n

Y x
i = 0

= YI x

Q = X x
i = 0

(ID

(12)

The effectiveness of this convergence method relies on the ease 
of computing the multiply factors mi using only MSD addition 
and multiplication operations. The recursive formula of Eq. (11) 
can be rewritten as

Yi+ i = Yi x mi = f(Yi) . (13)

We desire the function f(YO to converge to 1, starting from an 
initial value YO = Y. Equation (13) can be rewritten in a po 
lynomial form:

f(YO - Yi = 0 . (14)

Flynn26 described several iterative methods to enable such a 
polynomial to converge to a given value, say k. We are interested 
only in the quadratic convergence since this appears more con 
venient for optical realization. 20 To achieve this, let us rewrite 
Eq. (14) in a more general quadratic form:

f(YO - Yi = (Yi - ki)(Yi - ka) = 0 (15)

One of the roots of Eq. (15) should be 1. Krishnamurthy27 found 
that for f(Yi) to converge quadratically to 1 the factors mi should 
be selected as

begin
for i : = 0 to (Iog2n) - 1 do

mi : = 2 - Yi ;
Xi + i := Xi x mi ;
Yi + i := Yi x mi ; 

endfor;

Q := X(iog2n)-i ; 
end.

Table II illustrates the MSD convergence division of X = 
(O.lO)sD = (-0.5)io by Y = (O.ll)so = (0.75)i0 . For 16- 
digit precision, the method generate^ the quotient after three 
iterations, Q = (1.11101 1101 111111)SD = (-0.66664)i0 . 

Each iteration of the MSD division consists of three major 
operations: a pair of MSD multiplications, YJ+I = Yi X mi 
and Xi+i = Xi x irii, and a two's complement operation mi 
= 2 - Yi. Each MSD multiplication can be carried out optically 
as described in Sec. 4. The two's complement is carried out by 
a negation operation followed by an addition operation. The 
subtrahend Yi is negated using the SS rules in Fig. l(c). All 
nonzero digits of Yi are negated in parallel. The expression 2 
- Yi then becomes 2 + Yj, which is computed using the MSD 
addition rules in Fig. l(b). The two MSD multiplications re 
quired to generate Xi+1 and Yi+1 can be computed concurrently 
by replicating the MSD multiplication hardware into two chan 
nels, one for the numerator and one for the denominator, as 
shown in Fig. 7.

6. CONVERSION BETWEEN BINARY AND MSD 
REPRESENTATIONS
When the operands are in binary form, we must (1) convert them 
to MSD representation, (2) perform arithmetic operations using 
the parallel algorithms presented here, and (3) convert the result 
back to binary representation, as shown in Fig. 8(a).
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Fig. 8. Conversion from binary to MSD code and vice versa. (a) Logic
diagram showing the sequence of operations. (b) SS rules for con-
verting an MSD number to two components: Y+ and Y -. (c) SS rules
for converting an MSD number to a two's complement number.

6.1. From binary code to MSD code
Let us consider two representations of the binary number system,
namely, the unsigned notation and the two's complement
notation.4 An n -bit unsigned binary number xn -1,xn _ 2, ,xo,
where xi E {O,1 }, is equivalent to an MSD number
Yn - l ,yn -2, ,yo, where xi = yi and the equivalence means
same algebraic value. Therefore, no computation is involved in
converting the unsigned number to an MSD equivalent. The
same number can be fed to the MSD processor. An n -bit two's
complement number xn- 1,Xn- 2,...,Xp is equivalent to an
n -digit SD number yn -1,yn -2, ,yo, where yi = xi for all
i = 0,...,n -2 and

Y°-1 = Sl

(0 for )6_1 =
1 for xn _ 1 =

0

1 .
(17)

Therefore, the conversion of a two's complement number to an
MSD equivalent can be done easily by changing the most sig-
nificant bit xn _I to 0 or T. This can be carried out in constant
time, independent of the word length n.

6.2. From MSD code to two's complement code
The conversion from MSD code to binary format can be carried
out as follows: we separate an MSD number Y into two com-
ponents Y + and Y- , where Y + is an unsigned number formed
by the positive digits of Y, and Y is that formed by the negative
digits of Y; the binary number X, equivalent to Y, is then
obtained by subtracting Y- from Y +: X = Y+ -Y -. The
number X is an (n + 1)- bit integer in two's complement form.
The optical implementation of this conversion method can be
carried out in two steps. First, the MSD number Y is replicated
into two identical copies. In one copy, we replace all of the
occurrences of negative digits (i) by a zero symbol using SS
rule r29 of Fig. 8(b), leaving the Os and is unchanged. This
produces the positive part Y+ . In the other component, we
replace all of the occurrences of 1 by a zero symbol using SS
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1

The desired binary number

(b)

Fig. 9. Example of optical conversion from an MSD number to a
two's complement number. (a) Splitting Y into two parts: Y+ for
positive digits and Y- for negative digits. (b) Application of the SS
conversion rules of Fig. 8 for three iterations.

rule r30 of Fig. 8(b), leaving the Os and Is unchanged. This
produces the negative part Y- . We put Y + above Y- and apply
the SS rules shown in Fig. 8(c) repeatedly until the top word
becomes all zeros and the bottom word becomes the converted
number. The total number of iterations is equal to the total
number of nonzero digits (1 s and Is) in the original MSD num-
ber to be converted.

The above method is best explained by an example. Let us
consider the conversion of the MSD number Y = 1011. Figure
9 shows the different stages involved. Initially, the MSD number
Y is converted to two numbers Y+ and Y , as shown in Fig.
9(a). Next, the SS rules of Fig. 8(c) are applied to the two words
for three iterations, corresponding to the total number of sig-
nificant digits in Y. The final two's complement number is equal
to (7)1o, as depicted in Fig. 9(b). The conversion from MSD to
binary code using the above method can be performed in a time
proportional to the number of nonzero digits in the MSD number.
The conversion can be performed in a time proportional to log2n
for an operand of length n, using the carry- lookahead tech -
nique.28 However, the hardware complexity of the conversion
grows in proportion to n.

7. PERFORMANCE ANALYSIS

We evaluate the performance of the optical arithmetic algorithms
presented in this paper by estimating the processing time of each
operation. The optical implementation of symbolic substitution
is assumed to be the additive method based on replication, spatial
shifts, superimposition, thresholding, masking, and combining
as described in Ref. 10. The key parameters used in the analysis
are Tp, the propagation time of a light beam through passive
optical devices such as lenses, beamsplitters, and holograms;
T,, the switching time of the optical memory devices used to
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Fig. 8. Conversion from binary to MSD code and vice versa, (a) Logic 
diagram showing the sequence of operations, (b) SS rules for con 
verting an MSD number to two components: Y + and Y~. (c) SS rules 
for converting an MSD number to a two's complement number.

6.1. From binary code to MSD code
Let us consider two representations of the binary number system, 
namely, the unsigned notation and the two's complement 
notation.4 An n-bit unsigned binary number xn -i,xn _2,...,xo, 
where xi E {0,1}, is equivalent to an MSD number 
yn-i,yn-2,...,yo, where xi = yi and the equivalence means 
same algebraic value. Therefore, no computation is involved in 
converting the unsigned number to an MSD equivalent. The 
same number can be fed to the MSD processor. An n-bit two's 
complement number xn -i,xn -2»-.-»xo *s equivalent to an 
n-digit SD number yn -i,yn -2,...,yo, where yi = xi for all 
i = 0,...,n-2 and

0 forxn _! = 0 
T forxn-^l (17)

Therefore, the conversion of a two's complement number to an 
MSD equivalent can be done easily by changing the most sig 
nificant bit xn -i to 0 or 1. This can be carried out in constant 
time, independent of the word length n.

6.2. From MSD code to two's complement code
The conversion from MSD code to binary format can be carried 
out as follows: we separate an MSD number Y into two com 
ponents Y + and Y~, where Y* is an unsigned number formed 
by the positive digits of Y, and Y ~ is that formed by the negative 
digits of Y; the binary number X, equivalent to Y, is then 
obtained by subtracting Y~ from Y + : X = Y + - Y~. The 
number X is an (n+ l)-bit integer in two's complement form. 
The optical implementation of this conversion method can be 
carried out in two steps. First, the MSD number Y is replicated 
into two identical copies. In one copy, we replace all of the 
occurrences of negative digits (1) by a zero symbol using SS 
rule 129 of Fig. 8(b), leaving the Os and Is unchanged. This 
produces the positive part Y + . In the other component, we 
replace all of the occurrences of 1 by a zero symbol using SS

1011

1001

0010

Iteration 1:

Iteration 2:

Iteration 3:
0000000 

0000111 = (7)io

The desired binary number

(b)

Fig. 9. Example of optical conversion from an MSD number to a 
two's complement number, (a) Splitting Y into two parts: Y + for 
positive digits and Y~ for negative digits, (b) Application of the SS 
conversion rules of Fig. 8 for three iterations.

rule rso of Fig. 8(b), leaving the Os and Is unchanged. This 
produces the negative part Y~. We put Y + above Y~ and apply 
the SS rules shown in Fig. 8(c) repeatedly until the top word 
becomes all zeros and the bottom word becomes the converted 
number. The total number of iterations is equal to the total 
number of nonzero digits (Is and Is) in the original MSD num 
ber to be converted.

The above method is best explained by an example. Let us 
consider the conversion of the MSD number Y = 1011. Figure 
9 shows the different stages involved. Initially, the MSD number 
Y is converted to two numbers Y + and Y~, as shown in Fig. 
9(a). Next, the SS rules of Fig. 8(c) are applied to the two words 
for three iterations, corresponding to the total number of sig 
nificant digits in Y. The final two's complement number is equal 
to (7)io, as depicted in Fig. 9(b). The conversion from MSD to 
binary code using the above method can be performed in a time 
proportional to the number of nonzero digits in the MSD number. 
The conversion can be performed in a time proportional to Iog2n 
for an operand of length n, using the carry-lookahead tech 
nique. 28 However, the hardware complexity of the conversion 
grows in proportion to n.

7. PERFORMANCE ANALYSIS
We evaluate the performance of the optical arithmetic algorithms 
presented in this paper by estimating the processing time of each 
operation. The optical implementation of symbolic substitution 
is assumed to be the additive method based on replication, spatial 
shifts, superimposition, thresholding, masking, and combining 
as described in Ref. 10. The key parameters used in the analysis 
are Tp , the propagation time of a light beam through passive 
optical devices such as lenses, beamsplitters, and holograms; 
Ts , the switching time of the optical memory devices used to
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hold the data; Tf, the feedback time for light propagation through
the feedback interconnect (the MSD addition requires three suc-
cessive steps, where the result of one stage is fed back to the
next stage logic as described in Sec. 2); and Tactiv, the response
time of an optical NOR -gate array used for inversion and thresh -
olding.

7.1. Optical addition time
The MSD addition is performed in three stages. The total time
to perform each stage is attributed to the time needed to (1) hold
the input image, (2) replicate the input image, (3) propagate the
image through the first hologram to provide the shifts, (4) ac-
tivate the optical NOR -gate array for inverting the superimposed
image, (5) propagate light through the second hologram for
substitution, (6) superimpose the output of all of the rules, and
(7) feed back the intermediate result. Therefore, the total SD
addition time is estimated as

(1) (2) (3) (4) (5) (6) (7)

Tadd = 3( Ts + Tp + Tp + Tactiv + Tp + Tp) + 2Tf . (18)

The numbers over the braces indicate the times needed to ac-
complish each subtask as enumerated above. Tp and Tf can be
approximated by 0.1 ns (light propagates at 1 ft/ns in free space).
The dominant limitations to speed are the switching times of the
optical NOR -gate array and the optical memory elements, rep-
resenting the only active elements in the addition path. 29 There-
fore, the total MSD addition time would be Tadd
6Tactiv (assuming Ts = Tactiv). An n -digit MSD addition re-
quires (n + 1) x 4 pixels, where the factor 4 is introduced by
the encoding scheme used (two light pixels for each digit). There-
fore, for an optical gate array of size e x e pixels and a switching
time Tactiv, the optical MSD adder is able to perform Oa n -digit
additions per second, where

exe
Oa

6Tactiv X [(n + 1) X 4] (19)

Optical gate arrays of very small sizes (say 2 x 2 to 6 x 6)
have been demonstrated recently.30 These arrays offer the pos-
sibility of achieving a 10 -12 s switching time. However, these
optical gate arrays cannot be used in a practical system owing
to their small size and high power consumption. If we were to
use a commercial spatial light modulator (SLM) such as the
liquid crystal light valve (LCLV) with a 500 x 500 pixel reso-
lution and 20 ms switching time,31 we could perform about 16
x 103 32 -digit MSD additions per second. This yields an av-
erage of 1 /Oa = 62 µs per MSD addition. This speed is slower
than today's electronic adders. However, faster SLMs are being
produced in research laboratories.21 If the response time of the
SLM were reduced to 0.01 ps (10 ns), a 500 x 500 resolution
would bring the 32 -digit MSD addition time down to 30 ps,
which represents a 100 times improvement over electronic adders
of the same precision.

7.2. Optical multiplication time
Referring to the optical implementation model in Sec. 4, the
MSD multiplication time is attributed to the time needed to
(1) generate the partial products, (2) shift them, and (3) add up
the shifted partial products. This time is expressed as

(1) (2) (3)

Tmult = Tsp + Ts + 4Tp + Tactiv + T + Tadd X log2n , (20)

where Tsp represents the time needed to spread and shuffle the
operands. This time corresponds to light propagation through
passive devices, which can be estimated by 0.1 ns. Since
Tsp Tp < (Tactiv = Ts) and Tadd 6Tactiv , then Tm
2Tactiv(1 + 3log2n), where n is the precision of the multiplier.
An n -digit MSD multiplication requires 4 x (n x 2n) pixels,
where the factor 4 is related to the light encoding of the digit
set {1,0, 1 }. Using an SLM with x pixel resolution and
Tactiv switching time, we obtain Om n -digit MSD multiplications
performable per second:

exe
Om

4 x (n x 2n) X 2Tactiv X (1 + 3log2n) (21)

If we were to use a standard off -the -shelf SLM with 500 x 500
resolution and 20 ms switching time, there could be 48 MSD
multiplications per second. This corresponds to a speed of
1 /Om = 20 ms per one 32 -digit SD result. This looks very slow;
however, if the switching time of the SLM were reduced to 0.01
µs, the 32 -digit MSD multiplication time would be reduced to
10 ns, which is about 10 times faster than today's electronic
multipliers of the same word length.

7.3. Optical division time
Consider the optical implementation shown in Fig. 7. The time
required to perform one iteration of the SD convergence division
consists of the time needed to (1) generate the multiplicative
factor mi and (2) produce the next numerator and denominator
Xi +1,yi +1. This time is then multiplied by the logarithm of the
fraction length to obtain the total SD division time Tdiv:

(1) (2)r
Tdiv = (Ts + 4Tp + Tactiv + Tadd + Tf + Tmult + TO X log2n .

(22)

Substituting into Eq. (22) Tadd and 'Limit from Eqs. (18) and
(20), respectively, we obtain Tdiv Tactivlog2n(10 +6log2n).
An important feature of the MSD division algorithm is that
several dividends can be divided simultaneously by the same
divisor. This is because the multiply factors and the convergence
rate depend only on the magnitude of the divisor. An n -digit
MSD division requires 4 x (n x 2n) pixels to hold the accu-
mulated numerators or denominators (assuming that we are trun-
cating the intermediate products by n digits after each iteration).
Therefore, for an optical gate array of e X e resolution and
Tactiv switching time, we obtain Od MSD divisions per second:

Od
4 x (n x 2n) x Tactiv x log2n(10 + 61og2n)

exP
(23)

For a resolution e x e = 500 x 500 and a switching time
Tactiv = 0.01 µs, the time needed for a 32 -digit MSD division
would be 1 /Od, which is around 65 ns, or 100 times faster than
electronic dividers.

It can be seen from the analysis that to exploit the potential
advantages of optics (speed and parallelism), much research is
needed to develop better nonlinear optical devices (optical gate
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hold the data; Tf, the feedback time for light propagation through 
the feedback interconnect (the MSD addition requires three suc 
cessive steps, where the result of one stage is fed back to the 
next stage logic as described in Sec. 2); and Tactiv, the response 
time of an optical NOR-gate array used for inversion and thresh 
olding.

7.1. Optical addition time
The MSD addition is performed in three stages. The total time 
to perform each stage is attributed to the time needed to (1) hold 
the input image, (2) replicate the input image, (3) propagate the 
image through the first hologram to provide the shifts, (4) ac 
tivate the optical NOR-gate array for inverting the superimposed 
image, (5) propagate light through the second hologram for 
substitution, (6) superimpose the output of all of the rules, and 
(7) feed back the intermediate result. Therefore, the total SD 
addition time is estimated as

(1) (2) (3) (4) (5) (6) (7) 

Tadd = 3(rT + ^ + 'IT + ^tiT + T'JT + 1^) + 2T> . (18)

The numbers over the braces indicate the times needed to ac 
complish each subtask as enumerated above. Tp and Tf can be 
approximated by 0.1 ns (light propagates at 1 ft/ns in free space). 
The dominant limitations to speed are the switching times of the 
optical NOR-gate array and the optical memory elements, rep 
resenting the only active elements in the addition path. 29 There 
fore, the total MSD addition time would be Tadd ~ 
6Tactiv (assuming Ts = Tactiv). An n-digit MSD addition re 
quires (n+ 1) x 4 pixels, where the factor 4 is introduced by 
the encoding scheme used (two light pixels for each digit). There 
fore, for an optical gate array of size f x £ pixels and a switching 
time Tactiv, the optical MSD adder is able to perform ©a n-digit 
additions per second, where

(1)

it = Ts

(2) (3)

Tad<rxTog2iT, (20)

where Tsp represents the time needed to spread and shuffle the 
operands. This time corresponds to light propagation through 
passive devices, which can be estimated by 0.1 ns. Since

sp T « = Ts) and Tadd « 6Tactiv, then Tm ~
2Tactiv(l +31og2n), where n is the precision of the multiplier. 
An n-digit MSD multiplication requires 4 x (nx2n) pixels, 
where the factor 4 is related to the light encoding of the digit 
set {1,0,1}. Using an SLM with   x   pixel resolution and 
Tactiv switching time, we obtain 6m n-digit MSD multiplications 
performable per second:

em =
4 x (n x 2n) x 2Ta + 31og2n)

(21)

If we were to use a standard off-the-shelf SLM with 500 x 500 
resolution and 20 ms switching time, there could be 48 MSD 
multiplications per second. This corresponds to a speed of 
l/6m = 20 ms per one 32-digit SD result. This looks very slow; 
however, if the switching time of the SLM were reduced to 0.01 
JULS, the 32-digit MSD multiplication time would be reduced to 
10 ns, which is about 10 times faster than today's electronic 
multipliers of the same word length.

7.3. Optical division time
Consider the optical implementation shown in Fig. 7. The time 
required to perform one iteration of the SD convergence division 
consists of the time needed to (1) generate the multiplicative 
factor mi and (2) produce the next numerator and denominator 
Xi+ i,Yi+1. This time is then multiplied by the logarithm of the 
fraction length to obtain the total SD division time TdiV :

(1) (2)

ea = € x €
6Tactiv x [(n + 1) x 4]

(19) Tdiv = (Ts

Optical gate arrays of very small sizes (say 2 x 2 to 6 x 6) 
have been demonstrated recently. 30 These arrays offer the pos 
sibility of achieving a 10~ 12 s switching time. However, these 
optical gate arrays cannot be used in a practical system owing 
to their small size and high power consumption. If we were to 
use a commercial spatial light modulator (SLM) such as the 
liquid crystal light valve (LCLV) with a 500 x 500 pixel reso 
lution and 20 ms switching time,31 we could perform about 16 
x 103 32-digit MSD additions per second. This yields an av 
erage of l/Oa = 62 jxs per MSD addition. This speed is slower 
than today's electronic adders. However, faster SLMs are being 
produced in research laboratories. 21 If the response time of the 
SLM were reduced to 0.01 JJLS (10 ns), a 500x500 resolution 
would bring the 32-digit MSD addition time down to 30 ps, 
which represents a 100 times improvement over electronic adders 
of the same precision.

7.2. Optical multiplication time
Referring to the optical implementation model in Sec. 4, the 
MSD multiplication time is attributed to the time needed to 
(1) generate the partial products, (2) shift them, and (3) add up 
the shifted partial products. This time is expressed as

Tf) x Iog2n .

(22)

Substituting into Eq. (22) Tadd and Tmuit from Eqs. (18) and 
(20), respectively, we obtain Tdiv ~ Tactivlog2n(10 + 61og2n). 
An important feature of the MSD division algorithm is that 
several dividends can be divided simultaneously by the same 
divisor. This is because the multiply factors and the convergence 
rate depend only on the magnitude of the divisor. An n-digit 
MSD division requires 4 x (n x 2n) pixels to hold the accu 
mulated numerators or denominators (assuming that we are trun 
cating the intermediate products by n digits after each iteration). 
Therefore, for an optical gate array of   x   resolution and 
Tactiv switching time, we obtain ©d MSD divisions per second:

6d = € x
4 x (n x 2n) x Tactiv x Iog2n(10 + 61og2n)

(23)

For a resolution ( x   = 500x500 and a switching time 
Tactiv = 0.01 [jus, the time needed for a 32-digit MSD division 
would be 1/Od, which is around 65 ns, or 100 times faster than 
electronic dividers.

It can be seen from the analysis that to exploit the potential 
advantages of optics (speed and parallelism), much research is 
needed to develop better nonlinear optical devices (optical gate
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arrays and SLMs) with faster switching time and significantly
reduced switching energy. A significant speedup of an optical
arithmetic computer over the electronic counterpart depends heavily
on the maturity of optical switching technology in the years to
come.

8. CONCLUSIONS

The MSD code allows parallel addition -subtraction to be per-
formed in constant time. In this paper, we have developed par-
allel algorithms for MSD multiplication and division based on
parallel MSD addition. The execution times of the proposed
multiplication and division algorithms are both proportional to
log2n, where n is the length of the multiplier and of the divisor.
The optical implementation is based on symbolic substitution.
We have presented new SS rules and discussed available optical
setups for implementing the parallel algorithms.

We have assessed the performance of optical arithmetic based
on state -of- the -art optical devices. We conclude that the speedup
over electronic counterparts is rather limited owing to today's
slow switching time of optical gate arrays. If the switching time
of the optical gate arrays were reduced to nanosecond range,
we could perform 32 -digit optical addition, multiplication, and
division with a speedup ranging from 0(10) to O(103) over
existing electronic counterparts. Therefore, the potential of building
future supercomputers with optical arithmetic units looks very
promising and encouraging.
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arrays and SLMs) with faster switching time and significantly 
reduced switching energy. A significant speedup of an optical 
arithmetic computer over the electronic counterpart depends heavily 
on the maturity of optical switching technology in the years to 
come.

8. CONCLUSIONS
The MSD code allows parallel addition-subtraction to be per 
formed in constant time. In this paper, we have developed par 
allel algorithms for MSD multiplication and division based on 
parallel MSD addition. The execution times of the proposed 
multiplication and division algorithms are both proportional to 
Iog2n, where n is the length of the multiplier and of the divisor. 
The optical implementation is based on symbolic substitution. 
We have presented new SS rules and discussed available optical 
setups for implementing the parallel algorithms.

We have assessed the performance of optical arithmetic based 
on state-of-the-art optical devices. We conclude that the speedup 
over electronic counterparts is rather limited owing to today's 
slow switching time of optical gate arrays. If the switching time 
of the optical gate arrays were reduced to nanosecond range, 
we could perform 32-digit optical addition, multiplication, and 
division with a speedup ranging from O(10) to O(103) over 
existing electronic counterparts. Therefore, the potential of building 
future supercomputers with optical arithmetic units looks very 
promising and encouraging.
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