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Güzin Bayraksan
guzinb@sie.arizona.edu

Department of Systems and Industrial Engineering
University of Arizona, Tucson, AZ 85721

David P. Morton
morton@mail.utexas.edu

Graduate Program in Operations Research and Industrial Engineering
University of Texas at Austin, Austin, TX 78712

July 9, 2009

Abstract

We develop a sequential sampling procedure for a class of stochastic programs. We assume that
a sequence of feasible solutions with an optimal limit point is given as input to our procedure.
Such a sequence can be generated by solving a series of sampling problems with increasing sample
size, or, it can be found by any other viable method. Our procedure estimates the optimality
gap of a candidate solution from this sequence. If the point estimate of the optimality gap is
sufficiently small according to our termination criterion then we stop. Otherwise, we repeat
with the next candidate solution from the sequence under an increased sample size. We provide
conditions under which this procedure: (i) terminates with probability one and (ii) terminates
with a solution which has a small optimality gap with a prespecified probability.

Subject classifications: Programming, stochastic. Simulation, efficiency. Statistics, sampling.
Area of review: Simulation.
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1 Introduction

Stochastic programming provides a means for decision making under uncertainty by incorporating

random variables and probabilistic statements into optimization models. A major challenge in ana-

lyzing stochastic programs of practical size is having to consider a large, sometimes infinite, number

of scenarios. This usually leads to intractable models, even when specially-designed algorithms are

used. Monte Carlo sampling-based methods provide an attractive approximation when the number

of stochastic parameters is large. These methods replace probabilistic statements that appear in

the model (e.g., expectation) with sampling-based estimators (e.g., sample mean). They are usually

justified asymptotically, by providing conditions under which the approximating solutions solve the

stochastic program as the sample size grows to infinity. However, practical implementation requires

a finite sample size. A question of interest is then, what this sample size should be to have a good

approximate solution. One approach to this problem is to sequentially increase the sample size

until we reach a good solution. Such a procedure requires reliable rules to stop and to increase the

sample size. Moreover, a statement regarding the quality of the resulting solution is needed.

We develop such a sequential sampling procedure for a class of stochastic programs. In our

procedure, we assume we are given as input a sequence of candidate solutions, which has at least

one limit point that solves the original stochastic program. Such a sequence can be generated by

solving a series of sampling problems with increasing sample size, but we allow candidate solutions

to be generated by any method satisfying the above condition. Given a candidate solution, we

assess its quality with increasing sample size. We measure quality via the candidate solution’s

optimality gap. At each iteration when assessing the candidate solution’s quality, we can: (i)

reuse previously-generated sample observations and add additional, newly-generated samples, or

(ii) generate an entire new set of observations. Efficient warm start procedures for solving the next

iteration’s stochastic program favor the former choice. The risk of persisting with a “bad” set of

samples suggests we should occasionally choose the latter option. We investigate this tradeoff. We

terminate when a stopping criterion is satisfied, and we prove that asymptotically, this procedure

yields a high quality solution with a desired probability.

Research on sequential sampling methods began in earnest in the 1940s and such methods have

been successfully applied to problems in statistics, reliability, and statistical clinical testing (Ghosh

and Sen 1991; Ghosh, Mukhopadhyay, and Sen 1997). In sequential sampling, the sample size is not

fixed, but depends on the observations collected so far, and hence is random. Sequential estimation

relates closely to the study of random walks hitting prespecified sets (Gut 1988). A classic sequential

problem involves forming a fixed-width (Chow and Robbins 1965) or relative-width (Nadas 1969)

confidence interval (CI) for the mean by sequentially increasing the sample size. When simulating

stochastic systems, the run length takes the place of the sample size. For steady-state simulations,

Law (2007, pp. 529-532) surveys sequential methods for constructing fixed-width and relative-width

CIs for the mean performance measure of a stochastic system. Glynn and Whitt (1992) provide
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conditions under which asymptotic validity of sequential stopping rules can be achieved. More

recent work in the area of simulation involves selecting from a number of alternative system designs

using sequential sampling; see Kim and Nelson (2001, 2006).

The stochastic programs we consider represent a large class of problems found in statistics and

operations research. In statistics, a generalization of maximum likelihood estimators, called M-

estimators (Huber 1981), are an example of this form. Sequential sampling procedures have been

developed for M-estimators; see Hlávka (2000) and references therein. These procedures apply to

differentiable objective functions and focus on estimating an optimum solution. In the optimization

problems we consider, the objective function is frequently non-differentiable and we are indifferent

to how close we are to the set of optimal solutions as long as the candidate solution’s objective

function value is close to the optimal value, i.e., the optimality gap is small.

Even though our class of stochastic programs can be found under various names in the litera-

ture, we mainly focus on stochastic programs with recourse. While our main results hold for more

general models, our computational results are for two-stage stochastic linear programs with recourse

(SLP-2), where the objective function is convex and typically non-smooth. Stochastic quasigradient

algorithms can be applied in such cases; they mimic steepest descent in which gradients or subgra-

dients are replaced by sampling-based estimates. Ermoliev (1988) surveys such methods and Pflug

(1988) surveys step-size and stopping rules. One advantage of stochastic quasigradient methods is

that they have the potential to handle decision-dependent stochasticity. (We return to this issue

in §2.) However, when applied to SLP-2, they make limited use of special structure.

The L-shaped method (Van Slyke and Wets 1969) better exploits SLP-2’s special structure and

can handle a modest number of scenarios. Dantzig and Glynn (1990) and Infanger (1992) use

importance sampling to reduce variance in a L-shaped method. Higle and Sen (1996b) develop an

L-shaped method with sampling-based cuts, using a single stream of observations, where the cuts

are updated to ensure desirable asymptotics. For stochastic global optimization, Norkin, Pflug, and

Ruszczyński (1998) sample within a branch-and-bound algorithm. There has been work on how to

stop these procedures and how to assess their solution quality (Dantzig and Infanger 1995; Higle

and Sen 1991; Higle and Sen 1996a), but sequential issues that arise have received little attention.

Instead of embedding sampling in an optimization algorithm, another approach is to first sample

observations and then simply solve the resulting problem. There is a significant literature on large

sample size properties of this approach (e.g., Shapiro 2003). The sequence of candidate solutions our

procedure requires could be generated either by these “internal” or “external” sampling methods.

For convex, piecewise linear stochastic programs that have a unique, sharp optimum, Shapiro,

Homem-de-Mello, and Kim (2002) provide insight as to the sample size needed to find the optimal

solution via large deviations theory. When independent samples are drawn at each iteration,

Homem-de-Mello (2003) studies rates at which the sample sizes must grow to ensure consistency

of the objective function estimator, and he derives associated error statements in the spirit of the
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law of the iterated logarithm. For stochastic nonlinear programs, Polak and Royset (2008) propose

a procedure that approximately minimizes the computational effort required to reduce an initial

optimality gap by a prespecified fraction, in the context of so-called diagonalization schemes.

Morton (1998) develops stopping rules for algorithms that use asymptotically-normal optimality

gap estimates, formed as a difference of upper- and lower-bound estimators. For minimization prob-

lems, upper-bound estimators can be formed for a fixed feasible solution and asymptotic normality

is easy to achieve. A natural lower-bound estimator comes from minimizing a sample-mean objec-

tive function (Mak, Morton, and Wood 1999; Norkin, Pflug, and Ruszczyński 1998). In general,

this estimator is not asymptotically normal, and so the approach of Morton (1998) does not apply.

We overcome this difficulty, allowing use of the non-normal optimized sample-mean estimator. We

improve on Morton (1998) in two other ways: Our CI on the optimality gap uses the (observable)

sample variance estimator instead of the (unknown) population variance, and we develop procedures

under weaker moment conditions. Importantly, our main results do not require independent and

identically distributed (i.i.d.) sampling, and hence apply when using other sampling schemes that

are designed, e.g., to reduce variance. Another attractive feature of our approach is its flexibility

in how observations can be generated at each iteration. One option is to use a single stream of ob-

servations. At each iteration, we augment the existing set of observations with a few new samples.

Alternatively, the previous observations can be discarded and we can generate an entirely new set

of observations. Intermediate options also exist, and are permitted by the theory we develop.

The next section begins with the class of stochastic programs we consider, provides assumptions

for our sequential procedure, and discusses how our paper relates to the simulation-optimization

literature. §3 outlines our sequential procedure, stating the stopping rule, the rule to increase the

sample sizes and a statement regarding the quality of the solution obtained. In §4, we establish

properties of the sequential procedure under a moment generating function (MGF) assumption

(§4.1) and under weaker moment conditions (§4.2). §5 discusses how to choose free parameters

of the sequential procedure to minimize computational effort. In §6, we apply the procedure to

two-stage stochastic linear programs with recourse and present and discuss computational results.

We end the paper with a summary and future research directions (§7).

2 Framework

We seek a high quality (optimal or near-optimal) solution to a stochastic program of the form

z∗ = min
x∈X

Ef(x, ξ̃), (SP)

where the expectation is with respect to the random vector ξ̃. We assume ξ̃’s distribution is known,

ξ̃ is of finite dimension dξ, the distribution does not depend on x , and that we can sample from

it. We further assume X 6= ∅, X ⊂ <dx is compact, E supx∈X |f(x, ξ̃)| < ∞, and f(·, ξ̃) is lower

semicontinuous (lsc) on X, with probability one (w.p.1). This ensures Ef(·, ξ̃) is lsc, and hence (SP)
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has a finite optimal solution achieved on X. Later we impose more restrictive moment conditions

on f(·, ξ̃). We also assume f(x, ξ̃) can be evaluated given a realization of ξ̃ and x ∈ X.

The procedure we propose works as follows: At iteration k, we are given a candidate solution,

x̂k ∈ X. We select a sample size, nk, and evaluate this candidate solution. The quality of the

candidate solution is defined via its optimality gap, Ef(x̂k, ξ̃)− z∗: the smaller the optimality gap,

the higher the quality. The procedure stops when the optimality gap estimate falls below a certain

level. Otherwise, we continue with x̂k+1 ∈ X and nk+1 ≥ nk. Let X∗ denote the set of optimal

solutions to (SP). We assume the following with respect to the sequence of candidate solutions.

A1. The sequence of feasible candidate solutions {x̂k} has at least one limit point in X∗, w.p.1.

Such a sequence can be found by solving a series of sampling problems

z∗n = min
x∈X

1
n

n∑
i=1

f(x, ξ̃
i
), (SPn)

with optimal solutions x∗n and with sample sizes n = mk, such that mk → ∞ as k → ∞. Mild

conditions under which such a sequence satisfies A1 (and z∗n → z∗, w.p.1) can be found, e.g.,

in Attouch and Wets (1981), Dupačová and Wets (1988), and Rubinstein and Shapiro (1993).

However, we note that the sequence of candidate solutions is an input to our sequential procedure

and can be generated by any other method, e.g., by the stochastic decomposition algorithm of Higle

and Sen (1996b). That said, we assume that the method that generates {x̂k} does not depend on

the sampled observations used in our evaluation procedures.

For any x ∈ X, let µx = Ef(x, ξ̃) − z∗ and σ2(x) = var[f(x, ξ̃) − f(x∗min, ξ̃)], where x∗min ∈
arg miny∈X∗ var[f(x, ξ̃)− f(y, ξ̃)]. If (SP) has a unique optimum, i.e., X∗ = {x∗}, then x∗min = x∗.

When (SP) has multiple optimal solutions, x∗min depends on the given x.

Let ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
be a sample of size n. These observations could be i.i.d. from the same

distribution as ξ̃ or could be drawn in some other way, e.g., to reduce variance. Suppose we have

at hand an optimality gap estimator denoted Gn(x) that uses this sample of size n to estimate µx,

and similarly we have an estimator s2
n(x) ≥ 0 of the associated variance term σ2(x). As a concrete

example of such estimators, let ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
be i.i.d. from the distribution of ξ̃, let x∗n solve (SPn)

for this sample and form:

Gn(x) =
1
n

n∑
i=1

(
f(x, ξ̃

i
)− f(x∗n, ξ̃

i
)
)
, (1a)

s2
n(x) =

1
n− 1

n∑
i=1

[
(f(x, ξ̃

i
)− f(x∗n, ξ̃

i
))−Gn(x)

]2
. (1b)

The expression in (1a) motivates the use of the n individual observations of the gap in the sample

variance estimator (1b). We define

Dn(x) =
1
n

n∑
i=1

[
f(x, ξ̃

i
)− f(x∗min, ξ̃

i
)
]
, (2)
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where x∗min is defined as above for this x. The estimators Dn(x), Gn(x) and s2
n(x) all use the same

n observations ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
. We make the following assumptions:

A2. Let {xk} be a feasible sequence (i.e., xk ∈ X) with x as one of its limit points. Let nk satisfy

nk →∞ as k →∞. Then, lim infk→∞ P (|Gnk(xk)− µx| > δ) = 0 for any δ > 0.

A3. Gn(x) ≥ Dn(x), w.p.1 for all x ∈ X and n ≥ 1.

A4. lim infn→∞ s2
n(x) ≥ σ2(x), w.p.1 for all x ∈ X.

A5.
√
n(Dn(x)−µx)⇒ N(0, σ2(x)) as n→∞ for all x ∈ X, whereN(0, σ2(x)) is a normal random

variable with mean zero and variance σ2(x). Here, ⇒ denotes convergence in distribution.

The (SP) model encompasses a wide range of problems. For example, the model could involve

discrete or continuous decision variables with the feasible region X being finite, countable or un-

countably infinite. Moreover, we are primarily concerned with problems in which ξ̃ is a random

vector of moderate-to-large dimension. However, our assumptions limit the scope of what we can

address. As already indicated, we assume the distribution of ξ̃ does not depend on the decision x.

This assumption is typical in the stochastic programming literature but is restrictive relative to the

simulation-optimization literature. (SP) could represent a simulation-optimization problem where

long-run average work-in-process in a queueing network is minimized by allocating constrained

service rates to the network’s stations. Such a problem, with continuous decision variables, might

be approached via stochastic approximation (SA); see, e.g., Pflug (1996, Chpt 5). If instead we

allocate buffer capacity, or servers to each station, the decision variables would be discrete and one

could approach the problem using random search (e.g., Andradóttir 2006), the Stochastic Nested

Partition method of Shi and Ólafsson (2000ab) or the COMPASS method of Hong and Nelson

(2006). SA requires a gradient estimator, and the latter methods require objective function esti-

mates. Importantly, those estimates are formed for fixed x ∈ X, and this allows for the possibility

that the distribution of ξ̃ depends on x. Such dependency naturally arises in models in which the

expectation is with respect to a steady-state distribution, which in turn depends on system design.

In A3 we assume access to an estimator Gn(x) that bounds the optimality gap of x ∈ X from

above. This key assumption couples with the decision-dependent assumption to limit our scope.

Specifically, A3 effectively requires access to an estimator bounding the optimal value z∗ from below,

and such bounds can be difficult to obtain in a general simulation-optimization model in which |X|
is finite and large, or is infinite. As we describe shortly, we obtain such a lower-bound estimator

when we can optimize a sample mean. In forming and solving (SPn), the simplest approach first

samples, ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
, to form the sample-mean objective function and then optimizes with respect

to x ∈ X, and hence can preclude a model with decision-dependent uncertainty. For a stochastic

nonlinear program, solving (SPn) to optimality may be computationally expensive, or impossible,
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when its objective function or constraint set is not convex. One can attempt to circumvent decision-

dependency of ξ̃, e.g., by having ξ̃ be a vector of uniform random variables and employing inversion,

redefining f , but this can bring to the fore challenging nonlinearities and nonconvexities. For the

reasons just sketched, our immediate focus is limited to stochastic programs in which models of the

form (SPn) can be solved exactly, given n observations of ξ̃. See Bastin, Cirillo, and Toint (2006)

for more on convergence properties of (SPn) for nonconvex stochastic nonlinear programs.

With these caveats in place, we believe there is significant potential to employ our ideas in

broader contexts. Simulation-optimization algorithms with probabilistic global convergence guar-

antees can be used to generate the sequence of candidate solutions required by A1. Our approach is

then complementary, providing sequential-style stopping rules, at least when an appropriate lower-

bound estimator on z∗ is available. One such candidate estimator developed in Ensor and Glynn

(1997) involves extreme-value distributions and large-deviation results for problems with finite |X|.
For continuous decision variables with a convex objective function, the recent work in SA of Lan,

Nemirovski, and Shapiro (2008) uses a collection of gradient inequalities to form a lower-bound

estimator. That estimator is weaker than z∗n, but is available at any iteration of the SA algorithm.

So, their SA approach could be extended to the sequential setting using our ideas.

As an example of estimators that satisfy assumptions A2-A5, consider Gn(x) and s2
n(x) in (1).

Let f̄n(x) = 1
n

∑n
i=1 f(x, ξ̃

i
). With this notation, Gn(x) and Dn(x) are equivalently expressed as

Gn(x) = f̄n(x)− f̄n(x∗n) and Dn(x) = f̄n(x)− f̄n(x∗min). With this choice of estimators, assumption

A3 is immediate since f̄n(x∗n) ≤ f̄n(x∗min), w.p.1. Under i.i.d. sampling, Dn(x) is a sample mean of

i.i.d. observations, and hence if σ2(x) < ∞ then A5 holds by the standard central limit theorem

(CLT) for i.i.d. random variables. Note that if σ2(x) = 0, then f(x, ξ̃)−f(x∗min, ξ̃) = µx, for almost

all ξ̃ and A5 still holds, albeit in degenerate form. Sufficient conditions for A4 to hold under i.i.d.

sampling are given in Bayraksan and Morton (2006). Note that when (SP) has multiple optimal

solutions we cannot expect {x∗n} to have a single limit point and hence we cannot expect s2
n(x)

to converge as n → ∞. However, A4 is a form of consistency for s2
n(x) in the sense that it is

bounded below by σ2(x). (Recall, σ2(x) is defined with respect to x∗min.) In general, a sufficient

condition under which A2 holds is that f̄n(x) converges uniformly to continuous Ef(x, ξ̃) on X,

w.p.1. This holds under i.i.d. sampling and compact X provided f(·, ξ̃) is continuous on X, w.p.1,

and E supx∈X |f(x, ξ̃)| <∞; see, e.g., Shapiro (2003). We are now ready to present the sequential

sampling procedure in more detail.

3 Sequential Sampling Procedure

At iteration k ≥ 1 of the sequential procedure we select a sample size, nk, and we use nk total

observations to assess the quality of the current solution, x̂k. We can choose to generate ξ̃
1
, . . . , ξ̃

nk

independently of those generated in previous iterations. Or, we can augment the observations from

the previous iteration by generating nk − nk−1 additional observations, ξ̃
nk−1+1

, . . . , ξ̃
nk (assume
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n0 = 0). Intermediate possibilities between these two extremes are also permissible, and such

choices can be made differently at each iteration. To assess x̂k’s quality, we form an estimate

of its optimality gap, Gnk(x̂k), and its variance, s2
nk

(x̂k). If the current candidate solution does

not satisfy a stopping criterion, we repeat the above steps with sample size nk+1 ≥ nk and the

next candidate solution, x̂k+1. To simplify notation, from now on, we suppress dependence on

the candidate solution, x̂k, and the sample size nk, and simply denote µk = µx̂k , σ2
k = σ2(x̂k),

Dk = Dnk(x̂k), Gk = Gnk(x̂k) and sk = snk(x̂k). We terminate the procedure at iteration T when

the following stopping criterion is satisfied,

T = inf
k≥1
{k : Gk ≤ h′sk + ε′}. (3)

The random stopping iteration T is designed to be the first iteration Gk’s width relative to sk falls

below h′ > 0. Here, ε′ is a small positive number that ensures finite stopping, as we detail in the

next section. By choosing the stopping criterion (3), we are willing to accept larger optimality gap

estimates for problems with larger variability. Note that it is possible to add the condition {sk ≤ b}
to (3) so that when we stop, Gk is below a certain fixed threshold, h′b+ ε′.

The stopping criterion (3) is with respect to h′sT + ε′, and the statement regarding the quality

of the candidate solution when we stop is with respect to a larger relative term hsT + ε, where

h > h′ and ε > ε′. (Typically, we choose the epsilon terms so they are small compared to h′.) Such

inflation of the CI statement, relative to the the stopping criterion, is fairly standard when using

sampling methods with a sequential nature; see for example, Chow and Robbins (1965) or Glynn

and Whitt (1992). For the procedure we propose we will show

lim inf
h↓h′

P (µT ≤ hsT + ε) ≥ 1− α, (4)

where 1 − α is the desired confidence level with 0 < α < 1. In other words, (4) states that the

optimality gap of x̂T , the candidate solution when we stop, is a fraction of the sample standard

deviation plus ε, with a desired probability, 1−α, provided h is close enough to h′. Our procedure’s

sequential nature makes achieving this result a nontrivial task. Example 2 of Morton (1998) shows

that when sample sizes grow to infinity as h ↓ h′ but do not grow with the iterate k then result (4)

can fail to hold. The key is to have the sample sizes grow with the procedure’s iterates: see (5)

below. As before, if we have the additional condition {sT ≤ b}, then we asymptotically guarantee

that the optimality gap of x̂T is at most hb+ ε with a confidence level of 1− α.

At iteration k, we choose the sample size according to

nk ≥
(

1
h− h′

)2 (
cp + 2p ln2 k

)
, (5)

where cp = max{2 ln
(∑∞

j=1 j
−p ln j/

√
2πα

)
, 1}. Here, p > 0 is a free parameter that affects the

number of samples we generate. We discuss how to choose p in §5. The sample size growth formula
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in (5) is proportional to (h− h′)−2, it has a constant term, cp, which depends on p and α, and it

grows as O(log2 k) in iterations. In the next section, we show if the sample size satisfies (5) then

(4) holds under a finite MGF assumption. We also show the procedure stops in a finite number of

iterations. Before proceeding, we summarize our procedure.

Sequential Sampling Procedure:

Input: Values for h > h′ > 0, ε > ε′ > 0, 0 < α < 1, and p > 0. Method that generates candidate

solutions {x̂k} with at least one limit point in X∗. Resampling frequency kf , a positive integer.

Output: Candidate solution, x̂T , and a (1− α)-level CI on its optimality gap, µT .

0. (Initialization) Set k = 1, calculate nk as given in (5), and sample observations ξ̃
1
, ξ̃

2
, . . . , ξ̃

nk .

1. Use ξ̃
1
, ξ̃

2
, . . . , ξ̃

nk to form Gk and s2
k.

2. If {Gk ≤ h′sk + ε′}, then set T = k, and go to 4.

3. Set k = k + 1 and calculate nk according to (5). If kf divides k, then sample observations

ξ̃
1
, ξ̃

2
, . . . , ξ̃

nk , independently of samples generated in previous iterations. Else, sample nk − nk−1

observations ξ̃
nk−1+1

, ξ̃
nk−1+2

, . . . , ξ̃
nk from the distribution of ξ̃. Go to 1.

4. Output candidate solution x̂T and a one-sided CI on µT ,

[0, hsT + ε] . (6)

If the resampling frequency kf = 1, then at every iteration we sample observations ξ̃
1
, ξ̃

2
, . . . , ξ̃

nk

independently of previously-generated observations. At the other extreme, if kf is sufficiently large

then we continually augment the existing set of observations throughout execution of the procedure.

Frequent resampling decreases the likelihood the procedure fails to terminate for a number of

iterations because it is effectively stuck with a “bad” sample. Infrequent resampling increases the

effectiveness of a computationally-efficient warm start for solving the stochastic program required

to form Gk and s2
k in step 1. We investigate the associated tradeoff in §6.

4 Asymptotic Validity and Finite Stopping

The stopping iteration, T , and the solution, x̂T , provided by our sequential sampling method are

random variables. Therefore, unlike a deterministic optimization algorithm, statements regarding

finite stopping and the quality of the solution must be probabilistic. In §4.1 we first present a result

that shows (4) holds under a finite MGF assumption. Then, we prove and discuss finite stopping

of the algorithm. In §4.2 we relax the MGF assumption, replacing it with a finite rth moment

assumption.
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4.1 Finite Moment Generating Function

We establish the asymptotically-valid CI (4) under an assumption on the MGF of Dn(x), as defined

in (2). We state the MGF assumption next, and discuss how the assumption can be shown to hold.

A6. sup
n≥1

sup
x∈X

E exp
[
γ
(
Dn(x)−µx
σ(x)/

√
n

)]
<∞, for all |γ| ≤ γ0, for some γ0 > 0.

When ξ̃
1
, ξ̃

2
, . . . , ξ̃

n
are i.i.d. a sufficient condition to ensure A6 holds is that the MGF of the

scaled random variables [(f(x, ξ̃)− f(x∗min, ξ̃))− µx]/σ(x) exists, i.e.,

sup
x∈X

E exp

[
γ

(
(f(x, ξ̃)− f(x∗min, ξ̃))− µx)

σ(x)

)]
<∞ for all |γ| ≤ γ0. (7)

Condition (7) is satisfied when X is compact and ξ̃ has bounded support. For ξ̃ with possibly

unbounded support, but X compact, condition (7), and hence A6, holds when (SP) satisfies the

following Lipschitz condition

|f(x1, ξ̃)− f(x2, ξ̃)| ≤ K(ξ̃)‖x1 − x2‖ w.p.1 (8)

for all x1, x2 ∈ X, where the Lipschitz constant K(ξ̃) satisfies E exp[γK(ξ̃)] <∞ for |γ| ≤ γ0. How

can this Lipschitz condition be verified? We answer this for a special class of (SP), namely, for

two-stage stochastic linear programs with fixed recourse in which

f(x, ξ̃) = cx + min
y≥0

q̃y

s.t. Wy = r̃ − T̃ x.

Suppose this linear program is dual feasible for almost all q̃ and the stochastic program has relatively

complete recourse. Further, suppose q̃, r̃, and T̃ can each be expressed as a linear combination

of the underlying random vector ξ̃, which has independent components. Note that this allows for

first-order dependencies between the components of (q̃, r̃, T̃ ). Then, the Lipschitz condition (8) and

hence condition (7) will be satisfied when the squared Euclidean norm of the random vector ξ̃ has

an MGF, i.e., E exp[γ‖ξ̃‖2] <∞ for |γ| ≤ γ0; see Römisch (2003, Proposition 22). This provides a

natural sufficient condition under which we may be assured that the MGF assumption A6 holds.

Finally, we note at an x ∈ X at which σ2(x) = 0, Dn(x) is constant almost everywhere for all

n, and hence has an MGF. As will become clear in the proof of Theorem 3 below, this type of

degeneracy does not lead to an effective violation of A6.

Below we state and prove the validity of the sequential sampling procedure under hypothesis

A6. Our result, given in (4), is asymptotic, as h ↓ h′, i.e., as the sample sizes grow. We note

that even in the simple case of constructing a CI for a population mean under sequential sampling

the validity of the resulting CI, i.e., that the CI has the desired coverage probability, is proven

asymptotically (Chow and Robbins 1965). To prove (4), we make use of: (i) Fatou’s Lemma, which
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provides inequalities when “lim inf” and an integral (or an infinite sum) are exchanged and (ii) a

bound on the tail of a normal random variable. These are given in the next two lemmas. For proofs

of all lemmas that appear in the paper, please see the Online Appendix.

Lemma 1 (Fatou’s Lemma) Suppose {fn} is a sequence of measurable functions on E.

(i) If fn ≥ 0 for all n then ∫
E

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
E
fn.

(ii) If L ≤ fn ≤ U for all n, such that
∫
E L <∞ and

∫
E U <∞, then,∫

E
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
E
fn ≤ lim sup

n→∞

∫
E
fn ≤

∫
E

lim sup
n→∞

fn.

Lemma 2 (Bound on tail of a standard normal) Let Z be a standard normal and t > 0.

Then,

P (Z ≥ t) ≤ 1√
2π

exp[−t2/2]
t

.

The following theorem establishes asymptotic validity of the sequential procedure under A6.

Theorem 3 Assume A3-A6 are satisfied. Let ε > ε′ > 0, p > 0 and 0 < α < 1 be fixed.

Consider the sequential sampling procedure where the sample size is increased according to (5).

If the procedure stops at iteration T according to (3) then,

lim inf
h↓h′

P (µT ≤ hsT + ε) ≥ 1− α. (9)

Proof. Let ∆h = h− h′, ∆ε = ε− ε′ and M2 = supx∈X σ2(x). We have

P (µT > hsT + ε)

≤ P (µT ≥ GT + ∆hsT + ∆ε)

=
∞∑
k=1

P
(
G1 > h′s1 + ε′, . . . , Gk−1 > h′sk−1 + ε′, Gk ≤ h′sk + ε′, Gk − µk ≤ −∆hsk −∆ε

)
≤

∞∑
k=1

P (Gk − µk ≤ −∆hsk −∆ε)

≤
∞∑
k=1

P (Dk − µk ≤ −∆hsk −∆ε) , (10)

where the first inequality follows from (3) and inequality (10) follows from A3. So, it suffices to

show

lim sup
∆h↓0

∞∑
k=1

P (Dk − µk ≤ −∆hsk −∆ε) ≤ α.

11



To apply part (ii) of Fatou’s lemma, we first show that the right-hand side of (10) is bounded above

for all positive ∆h that are sufficiently small:

∞∑
k=1

P (Dk − µk ≤ −∆hsk −∆ε)

≤
∞∑
k=1

P (Dk − µk ≤ −∆ε)

=
∞∑
k=1

∫
x̂k

P (Dk − µk ≤ −∆ε | x̂k) dPx̂k (11)

≤
∞∑
k=1

∫
x̂k

E

[
exp

[
−γ0

(
Dk − µk
σk/
√
nk

)]∣∣∣∣ x̂k] exp
[
−γ0

M
(∆ε
√
nk)
]
dPx̂k (12)

≤ sup
k≥1

sup
x∈X

E exp
[
−γ0

(
Dk − µk
σk/
√
nk

)] ∞∑
k=1

k
−
(
γ0
√

2p∆ε
M∆h

)
, (13)

where Px̂k denotes the distribution function of x̂k, and (12) follows from an application of the

Chernoff bound (see, e.g., Ross 1998), to the conditional probability in (11). Note that for x̂k with

σ2
k = 0, the probability in (11) is 0. The multiplier of the infinite sum in (13) is bounded by A6

while the sum itself is bounded for all sufficiently small ∆h, more specifically, for all 0 < ∆h <

γ0

√
2p∆ε/M . Taking limits we obtain,

lim sup
∆h↓0

∞∑
k=1

P (Dk − µk ≤ −∆hsk −∆ε)

≤
∞∑
k=1

lim sup
∆h↓0

P (Dk − µk ≤ −∆hsk −∆ε)

≤
∞∑
k=1

lim sup
∆h↓0

∫
x̂k

P

(
Dk − µk
σk/
√
nk
≤ −∆h

√
nk

(
sk
σk

)∣∣∣∣ x̂k) dPx̂k
≤

∞∑
k=1

∫
x̂k

lim sup
∆h↓0

P

(
Dk − µk
σk/
√
nk
≤ −(cp + 2p ln2 k)1/2

(
sk
σk

)∣∣∣∣ x̂k) dPx̂k
≤ α,

where the first and the third inequalities follow from an application of Fatou’s lemma. With k and

x̂k fixed, Dk−µk
σk/
√
nk

converges to a standard normal by A5 since ∆h ↓ 0 ensures nk → ∞. Similarly,

lim inf∆h↓0(sk/σk) ≥ 1 by A4. The last inequality then follows by applying Lemma 2 and the

definition of cp.

Theorem 3 shows that for values of h close enough to h′, or, when the sample sizes nk are large

enough, we have the optimality gap of the solution when we stop in [0, hsT + ε] with at least

the desired probability of 1 − α. We now turn our attention to finite stopping and show that the

sequential procedure stops with probability one. We state this formally in the proposition below.
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Proposition 4 Assume A1 and A2 are satisfied. Let ε′ > 0 and h > h′ > 0 be fixed. Then, for the

sequential sampling procedure where the sample size is increased according to (5), and the procedure

stops at iteration T according to (3), we have P (T <∞) = 1.

Proof. Note that

P (T =∞) ≤ lim inf
k→∞

P (Gk > h′sk + ε′)

≤ lim inf
k→∞

P (Gk > ε′)

≤ lim inf
k→∞

P (|Gk − µk| > ε′ − µk),

and the final term is zero by A1 and A2.

4.2 Weaker Moment Conditions

In this section, we prove a variant of Theorem 3 that assumes finite moments up to order r.

Specifically, we relax the MGF assumption of the previous section to

A7. supx∈X E
[
f(x, ξ̃)

]r
<∞, for some even integer r ≥ 2.

With this relaxation the sequential procedure requires a larger number of observations (see (14)

below). Note that A7 implies supx∈X,y∈X∗ E[f(x, ξ̃)−f(y, ξ̃)]r <∞. For reasons discussed in detail

below, to obtain the desired property of asymptotic validity in this case, we confine our analysis to

i.i.d. sampling. Under these assumptions, we select the sample size at each iteration k according to

nk ≥
(

1
h− h′

)2 (
cp,q + 2pk2q/r

)
, (14)

where q > 1, p > 0 and where cp,q = max{2 ln
(∑∞

j=1 exp[−pj2q/r]/
√

2πα
)
, 1}. The growth in the

sample size is of order O(k2q/r) and we must choose q > 1. So, if A7 holds for r = 2 we can choose q

just larger than unity so the sample size essentially grows at a linear rate, and if A7 holds for r = 4

we can obtain a rate that essentially grows with k1/2. In other words, a less restrictive assumption

on the existence of moments implies a faster rate of growth for the sample sizes.

Under the MGF hypothesis, the sample size formula (5) contains a parameter, p > 0, at our

disposal. Now, under the moment hypothesis A7, if we elect the slowest possible rate of growth of

nk by choosing q just larger than unity then we can again view the sample size formula as being

parameterized by a free scalar term, p > 0.

To prove the validity and finite stopping of our procedure under the finite rth moment assump-

tion A7, we need a lemma that establishes a bound on the central moments of a sample mean. We

do this in two steps, in Lemmas 5 and 6.

Lemma 5 There are no more than [
√
rn ]r ways to place r distinguishable balls in n distinguishable

bins so that no bin contains exactly one ball.
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Lemma 6 Let X1, X2, . . . , Xn be i.i.d. random variables with mean µ and X̄n = 1
n

∑n
i=1X

i. If

E|X1 − µ| r <∞ for some integer r ≥ 1 then

E
(
X̄n − µ

)r ≤ E|X1 − µ|r
( r
n

)r/2
.

We are now ready to prove the validity and finite stopping of our procedure under the finite rth

moment assumption A7.

Theorem 7 Assume A1-A4 are satisfied, that A7 holds with r ≥ 2 even, and that ξ̃1, ξ̃2,. . . are

i.i.d. as ξ̃. Let ε > ε′ > 0, p > 0, q > 1 and 0 < α < 1 be fixed. Then, for the sequential sampling

procedure where the sample size is increased according to (14), and the procedure stops at iteration

T according to (3),

P (T <∞) = 1 and lim inf
h↓h′

P (µT ≤ hsT + ε) ≥ 1− α.

Proof. The proof of the finite stopping result is identical to that of Proposition 4. To prove

asymptotic validity, we start as in the proof of Theorem 3 and proceed until (11) the same way.

Then, instead of using a Chernoff bound, which is Markov’s inequality applied to the exponent of a

random variable, we apply Markov’s inequality with the rth moment under assumption A7, where

r is even
∞∑
k=1

∫
x̂k

P (Dk − µk ≤ −∆ε | x̂k) dPx̂k

≤
∞∑
k=1

∫
x̂k

P (|Dk − µk| ≥ ∆ε | x̂k) dPx̂k

≤
∞∑
k=1

∫
x̂k

E [ (Dk − µk)r | x̂k] ∆ε−r dPx̂k

≤ sup
x∈X

E
[
|f(x, ξ̃)− f(x∗min, ξ̃)− µx|r

]
rr/2∆ε−r

∞∑
k=1

1

n
r/2
k

, (15)

where (15) follows from Lemma 6. From the definition of nk given in (14), the right-hand side

of (15) is bounded. The hypothesis that ξ̃1, ξ̃2,. . . are i.i.d. along with assumption A7 holding for

r ≥ 2 implies that assumption A5 holds. As a result, the rest of the proof is analogous to that of

Theorem 3.

Theorem 7 differs from Theorem 3 in two respects. First, the MGF assumption A6 is replaced

by the weaker moment condition A7. Under this weaker assumption, the sample sizes are chosen

according to (14) instead of (5), requiring more observations. Second, Theorem 7 is only shown to

hold under i.i.d. sampling rather than the weaker assumption of asymptotic normality in A5. This

is because Theorem 7 hinges on Lemma 6, which we only establish for i.i.d. random variables.
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So far, we have verified desirable theoretical properties of our sequential procedure. In the next

section, we discuss issues that arise when implementing the procedure. In particular, we discuss

how to choose p when using the sample size formula (5) and how to choose q and p when using (14).

Then, we apply the procedure to five test problems that are two-stage stochastic linear programs

with recourse to examine its performance.

5 Choosing the Parameters of the nk Formulae

At iteration k of the sequential procedure, we choose the sample size according to (5) and (14)

under A6 and A7, respectively. Using this many samples, we solve a sampling problem (SPnk) to

estimate the optimality gap of the current candidate solution and its associated variance. Suppose

the procedure terminates in T iterations, having solved T sampling problems, (SPn1), (SPn2),

. . . ,(SPnT ). The computational effort exerted for the evaluation of the candidate solutions is

then approximately proportional to
∑T

k=1 nk. (For some decomposition methods, empirical studies

suggest the effort to solve a stochastic program grows linearly in the number of scenarios, see, e.g.,

Ruszczyński and Świetanowski 1997 and Verweij et al. 2003). So, the effort is proportional to

SM (p) = T max

{
2 ln

(∑∞
j=1 j

−p ln j

√
2πα

)
, 1

}
+ 2p

T∑
k=1

ln2 k (16a)

SW (p, q) = T max

{
2 ln

(∑∞
j=1 exp[−pj2q/r]
√

2πα

)
, 1

}
+ 2p

T∑
k=1

k2q/r, (16b)

under assumptions A6 and A7, respectively, for fixed h − h′. Assume, for the moment, that T is

known. The parameter p > 0 for SM (p) and the parameters p > 0 and q > 1 for SW (p, q) are at

our disposal. To reduce computational effort, we would like to choose them to minimize SM (p) and

SW (p, q). The following result helps to do so.

Proposition 8 Let SM (p) and SW (p, q) be defined in (16). SM (·) is convex on {p : p > 0} and

SW (·, q) is convex on {p : p > 0} for fixed q > 1. Furthermore, SM (p) and SW (p, q) are both

bounded below by

2T ln
(

T√
2πα

)
. (17)

The proof of Proposition 8 is provided in the Online Appendix. When employing the sample size

formula (5), the associated function SM (p) is convex, and its minimizers p∗ and minimal function

values SM (p∗) for various values of T are shown in the second and third columns of Table 1.

When we use sample size formula (14) we seek to select p and q to solve minp>0,q>1 SW (p, q). By

Proposition 8, SW (·, q) is convex and so we can minimize this function for a fixed value of q. The

fourth and fifth columns of Table 1 show the results of doing so for q = 1.5 and r = 2. We know

by the lower-bounding values, LB = 2T ln(T/(
√

2πα)), shown in the final column of the table that
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T p∗ SM (p∗) p∗ SW (p∗, 1.5) LB

10 4.07× 10−1 82 5.05× 10−2 78 74
50 1.91× 10−1 591 4.67× 10−3 552 530

100 1.53× 10−1 1,334 1.66× 10−3 1,243 1,198
500 1.04× 10−1 8,421 1.49× 10−4 7,822 7,598

1,000 9.08× 10−2 18,333 5.27× 10−5 17,031 16,583

Table 1: Choices of p that minimize SM (p) and SW (p, q).

these are suboptimal by no more than 2.5-5.5%. Table 1’s values for SM and SW (and LB) are

reported for α = 0.10, but the same p∗ values are optimal, e.g., for α = 0.05.

The results of Table 1 can guide selection of p given rough estimates for T . Of course, the

assumption that T is known is unrealistic. While we could view T as a random variable and

attempt to minimize SM or SW in expectation, we will not do so. When the procedure terminates

at a different iteration than that of the assumed T , the differences in sample sizes are quite modest.

For instance, taking h − h′ = 0.5 and α = 0.10, and using p = 1.91 × 10−1 (for T = 50), we have

nT ≥ 33, 56, and 65 samples when T = 1, 50 and 100 respectively under the MGF assumption of

A6. Similarly, we have nT ≥ 37, 55, and 63 when we instead use p = 1.53 × 10−1 (for T = 100).

For the weaker moment condition with r = 2 and q = 1.5, nT ≥ 39, 52, and 77 when T = 1, 50 and

100 respectively when we use p = 4.67 × 10−3 and nT ≥ 45, 50, and 58 samples when we instead

use p = 1.66× 10−3. Slightly smaller values of SW (p, q) (and nT ) can be obtained with even larger

values of q but the results are more sensitive to having assumed the “wrong” value of T .

6 Application to Two-Stage Stochastic Linear Programs

In this section, we apply the sequential sampling procedure to five two-stage stochastic linear pro-

grams with recourse from the literature. We begin by describing the test problems and the specifics

of our experiments, such as the different gap and variance estimators used, how we generated the

candidate solutions and what parameters we used. Then, we examine the computational trade-off

between augmentation and resampling by changing the resampling frequency, kf . Finally, we ex-

amine the empirical performance of the sequential procedure over the five test problems, including

the effect of initial sample size and the behavior as h ↓ h′.

6.1 Test Problems

We use five test problems from the literature, denoted CEP1, 4TERM, PGP2, APL1P and GBD.

Our first test problem, CEP1, is a capacity expansion planning problem in a production facility with

flexible machines facing uncertain demand (Higle and Sen 1996b). It has 3 independent stochastic

parameters with 6 realizations each, resulting in 216 scenarios. 4TERM is a freight transportation

problem in which a fleet of vehicles is positioned in the first stage before demand is known and

then operated with minimal cost via a multi-commodity network to satisfy demand. 4TERM is a
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Problem # of 1st stage # of 2nd stage # of stochastic # of z∗

name variables variables parameters scenarios
CEP1 8 15 3 216 355,158.92

4TERM 15 146 8 256 35,514.34
PGP2 4 16 3 576 447.32

APL1P 2 9 5 1,280 24,642.32
GBD 17 10 5 646,425 1,655.63

Table 2: Test problems used in the computational experiments.

smaller version of the test problem 20TERM used by Mak, Morton, and Wood (1999) and Linderoth,

Shapiro, and Wright (2006). 20TERM has 1 depot and 20 terminal cities with 1.1× 1012 scenarios

whereas 4TERM has 1 depot and 4 terminal cities, with 8 stochastic parameters and 256 scenarios.

We use 4TERM instead of the larger 20TERM since we can calculate all the desired performance

measures, allowing us to test our procedures. PGP2 is an electric power generation model with 3

stochastic parameters and 576 scenarios (Higle and Sen 1996b). APL1P, another power generation

model, has 5 independent stochastic parameters and 1280 scenarios (Infanger 1992). GBD is an

aircraft allocation problem originally described in Ferguson and Dantzig (1956). The original

model has 750 scenarios and the model that we use has 646,425 scenarios, obtained by refining

the original demand distributions. Table 2 lists summary characteristics of our test problems. The

table’s second and third columns give the number of decision variables for a single-scenario problem,

the fourth column the number of stochastic parameters, the fifth column the number of scenarios

and the final column, the instance’s optimal value. All five test problems can be solved exactly,

and hence allow us to assess the performance of our sequential sampling procedures.

6.2 Gap and Variance Estimators

We use two different methods to form the gap and variance estimators to assess the quality of

candidate solutions. These are the single replication procedure (SRP) and the averaged two-

replication procedure (A2RP). In Bayraksan and Morton (2006), we introduced SRP and A2RP and

focused on non-sequential estimation involving a single candidate solution, x̂. Below, we examine

their performance within a sequential sampling procedure. We now briefly explain SRP and A2RP.

For the SRP estimators, step 1 of the sequential procedure presented at the end of §3 computes

gap and variance estimators according to equations (1), i.e., step 1 becomes:

1.a. Solve (SPnk) using ξ̃
1
, ξ̃

2
, . . . , ξ̃

nk i.i.d. from ξ̃’s distribution to obtain x∗nk ,

1.b. Calculate Gk = 1
nk

∑nk
i=1

(
f(x̂k, ξ̃

i
)− f(x∗nk , ξ̃

i
)
)
, and

s2
k = 1

nk−1

∑nk
i=1

[
(f(x̂k, ξ̃

i
)− f(x∗nk , ξ̃

i
))− (f̄nk(x̂k)− f̄nk(x∗nk))

]2
.

The implementation of the sequential procedure with A2RP involves small changes. We select

nk even and divide the observations into two random partitions and calculate Gk, i and s2
k, i as
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above (steps 1.a and 1.b) with each sample containing nk/2 observations, i = 1, 2. We then pool

these gap and variance estimators to obtain Gk = 1
2(Gk,1 + Gk,2) and s2

k = 1
2(s2

k,1 + s2
k,2). (Note

that 1
2 is the correct factor for the pooled variance because s2

k,1 and s2
k,2 each estimate the variance

of f(x̂k, ξ̃)− f(x∗nk , ξ̃), not varGk,1 and varGk,2, in which case the correct factor would have been
1
4 .) The gap estimators, Gk, are identical under SRP and A2RP but the variance estimators, s2

k,

differ. For the sequential procedure that uses A2RP we use these pooled estimators for the stopping

criterion in step 3. Note that the gap and variance estimators formed by SRP and A2RP under

i.i.d. sampling satisfy assumptions A2-A5 stated in §2 (Bayraksan and Morton 2006).

6.3 Generating Candidate Solutions

The method to generate candidate solutions is an input to our procedure. Any method suffices

provided its sequence of candidate solutions, {x̂k}, has at least one optimal limit point (A1). In our

computational results, we generate the candidate sequence by solving a separate sampling problem

(SPmk) with increasing sample sizes mk at iteration k, as described below:

i. Setmk = m1. Sample i.i.d. observations (independent of those used in the evaluation procedures)

ξ̃
1
, ξ̃

2
, . . . , ξ̃

mk from the distribution of ξ̃,

ii. Solve (SPmk) using observations generated so far to obtain x∗mk ,

iii. Set x̂k = x∗mk . Calculate mk+1, sample mk+1−mk i.i.d. observations ξ̃
mk+1

, ξ̃
mk+2

, . . . , ξ̃
mk+1

from the distribution of ξ̃. Set k = k + 1 and go to ii .

In step i above, we use a separate stream of i.i.d. observations from the distribution of ξ̃,

independent from the ones generated in steps 0 and 2 of the sequential procedure. This ensures

assumption A3 from §2 holds. For our computational experiments, we set mk = 2nk. We exert

more computational effort to find high-quality candidate solutions and we use smaller sample sizes

to evaluate them. With this choice, a sequential procedure that stops at iteration T uses a total

of 3(n1 + n2 + · · · + nT ) observations. Finally, we note that all limit points of this sequence of

candidate solutions are in the set of optimal solutions, X∗, under mild conditions satisfied by our

test problems; see, e.g., Rubinstein and Shapiro (1993). So, assumption A1 is satisfied.

6.4 Parameters Used

All of the test problems satisfy assumptions stated in §2: X 6= ∅ and is compact, f(·, ξ̃) is continuous

on X, w.p.1., etc. Moreover, the random vector ξ̃ for each of these test problems has a discrete

distribution with independent components and bounded support. Therefore, the MGF assumption

A6 is satisfied for all γ0 and hence we use the sample size formula (5). We set α = 0.10 and design

the procedure for T = 50. Minimizing computational effort, we set p = 1.91× 10−1 (see §5). Once

the values of α and p, and therefore cp, are set, ∆h = h−h′ determines the initial sample size. For

instance, with the above values of α and p, ∆h = 0.287 corresponds to n1 ≥ 98.90 by (5). Rounding

this up to an even integer, since we will be testing two-replication procedures, yields n1 = 100 for
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n1 ∆h (h, h′) Test Problem
50 0.410 (0.425, 0.015) CEP1, 4TERM
100 0.287 (0.302, 0.015) GBD:100
100 0.287 (0.332, 0.045) PGP2
200 0.202 (0.217, 0.015) APL1P
300 0.165 (0.180, 0.015) GBD:300
500 0.1277 (0.1427, 0.015) GBD:500

Table 3: Values of h and h′ and the corresponding initial sample sizes.

this value of ∆h. At each iteration k, we similarly round up the nk from (5) and use the same

stream of random numbers for both SRP and A2RP.

Table 3 lists different values of ∆h and the corresponding initial sample sizes we use. As ∆h

shrinks the sample size grows. To examine the effect of the initial sample size, we use three values

of (h, h′) for GBD that result in initial sample sizes of n1 = 100, 300 and 500, and denote these as

GBD:n1. Selection of an initial sample size dictates a value of ∆h and can be chosen according our

computational ability to solve that problem. Specific values of h and h′ with ∆h = h−h′ can then

be determined as follows. A preliminary computational study, with a modest sample size, ns, can

be performed to gain an understanding of G/s, the main driver of the stopping rule. If, on average,

Gns/sns is small then h′ can be picked small. If however, the average value of Gns/sns is large,

then h′ cannot be chosen too small, otherwise, the procedure may require an excessive number of

iterations. For instance, our preliminary computations indicate G/s is approximately three times

smaller for GBD than for PGP2. Therefore, we pick h′ = 0.015 for GBD and pick h′ = 0.045 for

PGP2. Finally, h can be obtained from the resulting ∆h value for a desired initial sample size.

When implementing the procedure, we set ε = 2× 10−7 and ε′ = 1× 10−7. Here, ε′, in addition

to ensuring finite stopping, serves to deal with nonzero numerical tolerances. For instance, suppose

we are using a solver with a tolerance of 1×10−8 and at an iteration k, we calculate Gk = 1×10−8

and sk = 1×10−12, which we can essentially treat as 0. However, if we have ε′ = 0 in (3), we would

not stop for h <10,000. Note that ε′ = 1× 10−7 used in the stopping criterion (3) is small enough

not to interfere with stopping of the sequential procedure when Gk and s2
k are sufficiently large.

In summary, in our computational tests, the parameters α = 0.10, p = 1.91×10−1, ε = 2×10−7,

and ε′ = 1× 10−7 are the same for all test problems and the values of h and h′ differ as shown in

Table 3. In the next section, we study the effect of resampling to help guide selection of parameter

kf , the resampling frequency.

6.5 Computational Results

The sequential sampling method depends on our ability to efficiently solve a sequence of problem

instances (SPnk) as nk grows. In our computation, we use the regularized decomposition algo-

rithm of Ruszczyński (1986). An accelerated implementation of this algorithm, in C++, is due
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to Ruszczyński and Świetanowski (1997). Our problem instances are two-stage stochastic linear

programs, and the regularized decomposition method is a cutting-plane algorithm whose iteratively

updated collection of cuts forms a piecewise-linear approximation of each f(x, ξ̃
i
), i = 1, . . . , nk,

in the sample-mean objective function f̄nk(x) = 1
nk

∑nk
i=1 f(x, ξ̃

i
). After solving (SPnk), we can

then augment the sample with a small number, nk+1 − nk, of additional observations to form the

new, but similar objective function f̄nk+1
(x). Importantly, when augmenting the sample in this

way, the previously formed piecewise-linear approximations of f(x, ξ̃
i
), i = 1, . . . , nk, remain valid.

So, we modified the code of Ruszczyński and Świetanowski to warm-start the algorithm, retaining

cuts generated when solving (SPnk), when we then solve (SPnk+1
). This dramatically reduces the

computational effort required to find a solution to this new sampling problem.

The above warm-start method extends to convex stochastic nonlinear programs, but a different

approach would be required in a two-stage stochastic integer program with discrete decision vari-

ables in the second-stage problem. More generally, the ability to efficiently solve (SPnk+1
), formed

by adding a few samples to a recently-solved problem instance (SPnk), will significantly improve

the computational efficiency of our procedure. However, the means by which one effects such a

warm-start procedure will depend on special structures of the problem class under consideration.

Even though adding additional samples to the existing problem can speed solution times for that

new problem, it does not mean it is always desirable to do so. As mentioned before, our method

allows for augmenting the current set of samples or generating an entirely new set. Augmenting

is computationally attractive in the short-run, but we may get trapped, for an extended number

of iterations, in a “bad” sample path. Resampling helps the procedure move to a different sample

path but we must typically solve the new problem instance “from scratch.” In what follows, we first

examine this trade-off between augmentation and resampling by changing the resampling frequency,

kf . Then, we examine the performance of the sequential procedure that uses SRP and A2RP.

6.5.1 Augmentation versus Resampling

To examine the effect of augmentation versus resampling, we varied the resampling frequency, kf ,

from 100 down to 1 using the SRP estimators on all test problems. Table 4 shows the results of our

tests for GBD with three initial sample sizes, and Figure 1 shows results for all our test problems.

Each row of Table 4 is obtained with 300 independent runs of our procedure. We report the

average solution time over all 300 runs (in seconds), which includes time for generating the sequence

of candidate solutions and time for assessing their quality; the average time spent only in assessing

solution quality (in seconds), again over the 300 runs; the average number of (SPn)s solved in

assessing solution quality; and, the time spent assessing solution quality per sampling problem

(SPn), i.e., the ratio of the previous two entries. We also report the average number of iterations

the procedure took to terminate (T ) and, the empirical coverage probability (p̂), along with their

90% CI halfwidths. The value of p̂ is the fraction of the 300 CIs, [0, hsT + ε], that contained
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Solution Assess (SPn)s Assess Time/ 90% CI on 90% CI on
Problem kf Time Time Solved (SPn) T p̂

GBD:100 100 2.66 0.84 31.98 0.026 102.82 ± 18.84 0.78 ± 0.04
75 2.39 0.76 29.57 0.026 79.71 ± 14.32 0.77 ± 0.04
50 2.05 0.64 25.98 0.025 53.09 ± 7.06 0.76 ± 0.04
25 1.72 0.57 22.54 0.025 38.85 ± 5.26 0.70 ± 0.04
12 1.41 0.50 18.42 0.027 27.29 ± 4.45 0.70 ± 0.04
6 1.09 0.41 14.21 0.029 16.86 ± 1.98 0.69 ± 0.04
3 0.93 0.38 11.59 0.033 12.20 ± 1.26 0.67 ± 0.04
1 0.88 0.46 9.04 0.051 9.04 ± 1.08 0.62 ± 0.05

GBD:300 100 4.60 1.36 20.88 0.065 26.92 ± 7.05 0.86 ± 0.03
75 4.19 1.23 19.13 0.064 23.80 ± 6.64 0.86 ± 0.03
50 4.18 1.23 18.45 0.067 22.95 ± 5.78 0.86 ± 0.03
25 2.91 0.88 13.24 0.066 13.94 ± 2.40 0.85 ± 0.03
12 1.99 0.63 8.96 0.070 9.00 ± 1.25 0.81 ± 0.04
6 1.31 0.42 5.58 0.075 5.58 ± 0.59 0.79 ± 0.04
3 1.03 0.36 3.97 0.091 3.97 ± 0.39 0.77 ± 0.04
1 0.85 0.35 2.93 0.120 2.93 ± 0.24 0.66 ± 0.05

GBD:500 100 4.64 1.38 11.03 0.125 12.44 ± 4.53 0.85 ± 0.03
75 3.73 1.10 9.75 0.113 10.37 ± 3.22 0.84 ± 0.03
50 3.98 1.20 10.24 0.117 11.86 ± 4.89 0.85 ± 0.03
25 2.28 0.69 5.91 0.117 6.00 ± 1.48 0.85 ± 0.03
12 1.72 0.55 4.48 0.124 4.48 ± 0.69 0.84 ± 0.03
6 1.42 0.48 3.45 0.139 3.45 ± 0.59 0.82 ± 0.04
3 1.21 0.43 2.56 0.168 2.56 ± 0.37 0.82 ± 0.04
1 0.94 0.36 1.81 0.199 1.81 ± 0.14 0.81 ± 0.04

Table 4: Effect of resampling frequency, kf , for GBD.

the true optimality gap at the stopping iteration, µT , i.e., p̂ estimates the probability in (4). A

90% CI on the actual coverage probability, P (µT ≤ hsT + ε), is given by p̂± 1.645
√
p̂(1− p̂)/300,

which is reported in Table 4’s last column. We note that we always augment the sampling problem

(SPmk) with additional samples when generating the candidate solutions, and only examine the

resampling-frequency idea in the context of assessing solution quality. We only employ resampling

in the latter case because we want to isolate its effect on assessing solution quality, as our approach

allows for generating the sequence of candidate solutions in any way that satisfies A1.

In Table 4, as kf decreases the solution time, the iteration the sequential procedure stops, T ,

and the coverage probability, p̂, all tend to decrease. The time spent in assessing solution quality

also tends to decrease as kf decreases, however, it can start to increase for low values of kf ; see

the entries for GBD:100. As kf decreases, the values in the “Assess Time/(SPn)” column tend to

initially decrease slightly and then increase. The increase is because when kf is small we lose the

computational advantage of warm-starts. However, this is countered by the fact that a large kf
corresponds to more iterations (larger T ), which requires solving larger instances of (SPn). The
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coverage probabilities can deteriorate substantially as kf shrinks. This effect is less pronounced for

larger initial sample sizes, but suggests a risk of undercoverage if we resample too frequently.

We performed the same analysis for the remaining test problems and found similar results,

summarized in Figure 1. The left-hand plot shows the percentage change in assess time per sampling

problem, compared to that of kf = 100 and the right-hand plot shows the coverage probabilities

out of 300 independent runs as a function of kf . For CEP1 and 4TERM there is not much change,

therefore, the lines in Figure 1 for these two problems remain flat. (We discuss these two problems

in more detail in the next section.) For all other problems, assess time per sampling problem

remains relatively flat as kf drops from 100 down to about kf = 25 and then starts to increase,

with increases as large as 159% (for APL1P) when kf = 1. And, the coverage probability remains

relatively high until about kf = 25 but deteriorates with further decrease in kf .

When determining an appropriate value of kf , we consider the solution time, the computational

efficiency of warm-starts and coverage probabilities. Based on the above results, to minimize the

computation time, we would choose kf as small as possible. However, small values of kf increase the

risk of undercoverage and result in more computational effort per problem. Therefore, we would like

to choose kf as small as possible while keeping computational efficiency and coverage probability at

similar levels as those of larger values of kf . The results in Table 4 and Figure 1 suggest that kf = 25

provides a good balance between these considerations. The solution time is quicker compared to

larger values of kf but the computational burden per problem remains small and the coverage

probability remains reasonably high. When kf decreases below 25, the coverage probability can

deteriorate substantially and the computational burden per problem increases steadily. In the rest

of the computational experiments, we set kf = 25 for all test problems.

We close this subsection with an additional remark on the results in Table 4. The effect of the

sublinear O(log2 k) sample-size formula becomes apparent in Table 4 via the average number of

(SPn)s solved (column 5) versus the number of iterations, T (column 7). When T is small, these

values agree, as we solve exactly one (SPn) for assessing solution quality each iteration. However,

when k is larger, we can increase to k + 1 and still have nk = nk+1, after rounding. If we are

not at a resampling iteration this means (SPnk) and (SPnk+1
) are identical and we do not have to

(re)solve to obtain the x∗nk+1
and f(x∗nk+1

, ξ̃
i
), i = 1, . . . , nk+1, used in steps 1.a and 1.b to form the

estimators in §6.2. So, the number of “(SPn)s Solved” is a fraction of T that shrinks as T grows.

6.5.2 Empirical Performance of the Sequential Procedure

We now further analyze coverage properties of our sequential procedure for two different optimality

gap estimators, namely, estimators based on SRP and on A2RP (§6.2). Table 5 provides a summary

of results for all test problems. As above, the results are based on 300 independent runs of the

sequential procedures. To reduce the effect of sampling when comparing the results, we use the

same stream of random numbers to feed each estimation procedure. Also, since A2RP uses sample
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Figure 1: Percentage change in assess time per sampling problem relative to kf = 100 (left) and
coverage probabilities (right) across different values of kf .

sizes that are even, we round up the sample sizes for SRP so they are even as well. Table 5 reports

the number of iterations (T ), the CI width on the optimality gap of the obtained solution (hsT + ε)

and an estimate of the coverage probability, i.e., the fraction of the 300 CIs that contained the true

optimality gap (p̂). For each of these, we report the average of the 300 runs, along with their 90%

CI half-widths. We also report the average time it took for the 300 runs to complete (in seconds).

We now discuss the results of Table 5 for each test problem in more detail.

CEP1 and 4TERM are both amenable to solution via sampling, i.e., we can obtain optimal

solutions to these problems with high probability by solving a sampling problem with a relatively

small number of observations. Results in Table 5 indicate that the sequential procedure works well

in this case, quickly recognizing an optimal solution and exiting in very few iterations. We note

that CIs on optimality gaps for CEP1 are all within 0.1% of optimality (see z∗ values in Table

2) and all solutions found are indeed optimal. The solution time for 4TERM is larger because its

second stage problems take longer to solve.

The sequential procedure also works well for APL1P. The CI widths on the optimality gap

are within 0.3% of optimality for both methods and coverage probabilities are 0.90 or higher. For

GBD, the CI widths are again within 0.3% of optimality for all initial sample sizes (100, 300 and

500), but the sequential procedure that uses SRP does not yield the desired coverage probability of

0.90. SRP has undercoverage even for our largest initial sample sizes. The sequential procedure that

uses A2RP does achieve the desired coverage probability, albeit with somewhat wider CIs. Solution

time can grow with the number of iterations, and so A2RP can require more computational effort.

However, note that for instance, for GBD:100, the average T using A2RP is about 5 times that of

SRP, yet the solution time only grew 3 times. This is because solving two smaller problems (A2RP)

can be more efficient than solving one large problem (SRP). As the initial sample size increases

(i.e., as h ↓ h′), the sequential procedures take fewer iterations, yield smaller CIs on the optimality

gaps with higher coverage probabilities and the differences between SRP and A2RP in terms of the
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90% CI on 90% CI on 90% CI on Solution
Problem Method T hsT + ε p̂ Time

CEP1 SRP 1.31 ± 0.19 243.31 ± 113.91 1.00 ± 0.00 0.028
A2RP 3.33 ± 0.59 345.12 ± 120.64 1.00 ± 0.00 0.051

4TERM SRP 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.500
A2RP 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.492

PGP2 SRP 13.94 ± 2.91 15.23 ± 2.23 0.79 ± 0.04 1.141
A2RP 73.15 ± 8.93 14.06 ± 1.95 0.78 ± 0.04 3.944

APL1P SRP 25.60 ± 3.27 53.11 ± 5.34 0.90 ± 0.03 5.373
A2RP 90.65 ± 10.53 72.63 ± 4.52 0.99 ± 0.01 14.710

GBD:100 SRP 38.85 ± 5.26 5.14 ± 0.60 0.70 ± 0.04 1.722
A2RP 195.98 ± 20.02 7.41 ± 0.56 0.94 ± 0.02 5.262

GBD:300 SRP 13.94 ± 2.40 2.18 ± 0.22 0.85 ± 0.03 2.905
A2RP 35.58 ± 7.77 3.32 ± 0.23 0.96 ± 0.02 6.627

GBD:500 SRP 6.00 ± 1.48 1.29 ± 0.17 0.85 ± 0.03 2.277
A2RP 14.57 ± 1.86 2.18 ± 0.13 0.95 ± 0.02 5.341

Table 5: Summary of results for sequential procedures that use SRP and A2RP.

number of iterations and solution times shrink. Even though we are solving problems that are 5

times larger for GBD:500 than for GBD:100, the growth in solution times are quite small, since the

sequential procedures stop in fewer iterations when started with a larger sample size.

The primary reason the stopping iteration, T , tends to be larger for A2RP compared to SRP is

due to the larger bias in the A2RP estimators since Ez∗n/2 ≤ Ez∗n ≤ z∗. Even with these larger T

values the sample sizes at the stopping iteration, nT , for A2RP are less than twice that of SRP. For

example, for PGP2, ALP1P and GBD:100, 90% CIs on nT are: 120.21 ± 2.64 (SRP) and 170.31

± 3.67 (A2RP); 271.21 ± 6.38 (SRP) and 349.03 ± 9.01 (A2RP); and, 146.12 ± 3.53 (SRP) and

209.18 ± 4.73 (A2RP), respectively. So, the bias in the A2RP estimators is larger at termination,

and hence, it is not surprising that the CI widths tend to be larger for A2RP compared to SRP.

All test problems except PGP2 reach the desired coverage probability using A2RP estimators

and all CI widths on optimality gaps except for PGP2 are within 0.5% of optimality. PGP2 yields

relatively larger CI widths (about 3% of optimality) and has undercoverage. This is because for

this problem, the variance associated with some of the frequently-obtained solutions is quite large.

Moreover, the frequent appearance of so-called coinciding non-optimal solutions decreases coverage;

see §6 of Bayraksan and Morton (2006) for details on this concept and its effect on sampling-based

approximations of PGP2. In the context of sequential sampling, to obtain better results, one might

try to control the sampling variance by adding the condition {sk ≤ b} to the stopping criterion.

However, we have seen that this can result in very long runs, with T ≥ 1,000. Another way to

decrease variance and improve coverage probability is to increase the sample size. Towards this

end, we fix h′ = 0.015 and by letting h ↓ h′, we run the sequential procedures for increasing initial

sample sizes from 100 (h = 0.332) to 400 (h = 0.188). As before, we performed 300 independent
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Figure 2: Performance of the sequential procedure as h ↓ h′, i.e., as n1 grows, for PGP2.

runs of SRP and A2RP at each initial sample size. Figure 2 summarizes the results, showing the

average values of T , hsT + ε, p̂, and the solution time. The coverage probability for A2RP is almost

0.90 at n1 = 200 and remains at desirable levels. SRP’s coverage can be low but improves as the

initial sample size increases. CI widths, the number of iterations as well the difference between

SRP and A2RP for these performance measures shrink as the initial sample size increases, i.e., as

h ↓ h′. Like GBD, the growth in solution time is modest. For instance, increasing the initial sample

size by a factor of 4 results in less than a factor of 1.2 increase in solution time for A2RP and less

than a factor of 2 increase for SRP.

Overall, the results of Table 5 and Figure 2 indicate that the A2RP method, on average,

takes more iterations to terminate, typically yields larger CIs on the optimality gap and has more

conservative coverage probabilities. CEP1, 4TERM and APL1P indicate that SRP can work well

for some problems. However, GBD and PGP2 suggest that for other problems, SRP can have

undercoverage even for relatively large initial sample sizes. As h ↓ h′, A2RP’s coverage probability

seems to stabilize while the CI widths as well as the number of iterations decrease and become

comparable to SRP. The increase in solution time, as the initial sample size grows, is quite modest.

We view the results as consistent with our observations in the non-sequential setting (Bayraksan

and Morton 2006), i.e., A2RP tends to reduce the risk of undercoverage that can arise from the

SRP estimators. Here, the sequential sampling procedure suggests to a “user” that a solution to

a decision problem is of high quality, and for that reason we lean toward being conservative. So,
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while the A2RP requires somewhat greater computational effort, its results are more robust across

the problems we have examined and we recommend A2RP over SRP.

7 Conclusions

In this paper, we develop a sequential sampling procedure for stochastic programs. We assume

that a sequence of candidate solutions with at least one limit point that solves (SP) is given as

input to the procedure. Then, the procedure assesses the quality of these candidate solutions with

increasing sample size and terminates according to a stopping criterion. That criterion depends

on the optimality gap estimate of the current solution and its associated variance. If the gap

estimate is sufficiently small relative to its variance, then the procedure stops and outputs a CI on

the optimality gap of the current candidate solution. If not, the sample size is increased. Below

we summarize the contributions of the paper and list insights gained from our computational

experiments. Then, we conclude the paper with future research directions.

• We provide specific rules to sequentially increase the sample size and to terminate that yield a

CI on the resulting solution’s optimality gap. The CI is ensured to be small, within a prespec-

ified relative tolerance, and the CI is ensured to be asymptotically valid, with a prespecified

probability under certain conditions such as consistency of the variance estimator and the

existence of moments, or the MGF, of the performance measure. The procedure terminates

in a finite number of iterations with probability one under mild assumptions on the limiting

behavior of the sequence of candidate solutions and the optimality gap estimator.

• The required rate at which the sample size grows depends on moment information known

regarding the performance measure. When the MGF of the performance measure exists, then

the growth is O(log2 k) in the iteration k. If only the second moment exists, the rate is

essentially O(k).

• At each iteration, the sequential procedure allows for augmenting previously generated ob-

servations, or, generating an entirely new set of observations. Computational results indicate

that as we resample with a higher frequency, solution time decreases but coverage probability

deteriorates. We recommend kf = 25 as providing a good balance between these considera-

tions, based on the test problems we have examined.

• We apply the sequential sampling procedure with the SRP and A2RP estimators of Bayraksan

and Morton (2006). In our experiments, we observed that A2RP can require more iterations,

and computational effort, but the SRP-based procedure has a greater risk of undercoverage.

Under larger initial sample sizes: (i) the difference in computational effort between SRP and

A2RP, along with the difference in their CI widths, shrinks, and (ii) coverage results for A2RP

26



tend to reach desired levels more quickly than for SRP, at least for problems with a risk of

undercoverage. As the initial sample size increases, the growth in solution times is modest.

• Based on our computational results, we recommend the use of A2RP. If the associated com-

putational effort is excessive, SRP can be used instead, albeit with a risk of undercoverage

for some problems.

In this paper, we used instances of a sampling problem (SPmk) with growing sample sizes, mk,

at iteration k, to generate a sequence of candidate solutions. For specific problem classes, such a

sequence can be generated more efficiently using a sampling-based algorithm such as the stochastic

decomposition algorithm of Higle and Sen (1996b) or the stochastic approximation algorithm of

Lan, Nemirovski, and Shapiro (2008). Importantly, these two algorithms also generate lower-bound

estimators, which our procedure requires. The focus of this paper has been on the structure of the

sequential procedure needed for assessing solution quality, but an important area for future research

is to embed our procedure in these types of algorithms.

Another area for future research is to develop more efficient sequential sampling procedures

while maintaining the desired asymptotic properties. For instance, adaptive sequential methods

can be designed where the sampling method takes into account the information obtained about

the problem so far. Carefully designed adaptive methods can be more efficient while maintaining

the desired asymptotic properties. The performance of the sequential procedure depends on the

quality of the optimality gap estimators. There is ongoing work to improve the quality of these

estimators by reducing their bias and variance.
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Proof of Lemma 1. For a proof of part (i), see, e.g., Rudin (1976). Part (ii) follows from applying

part (i) to (fn − L) and (U − fn). �

Proof of Lemma 2. The proof of Lemma 2 can be found, e.g., in Casella and Berger (1990,

p.185). �

Proof of Lemma 5. Let γrn denote the number of ways r distinguishable balls can be placed in
n distinguishable bins so that no bin contains exactly one ball. We must show γrn ≤ [

√
rn ]r. The

desired result holds when r ≥ n and is also immediate for r ≤ 3. Thus, we restrict attention to the
case r ≥ 4 and n ≥ r and proceed by induction. By conditioning on whether the first two balls are
placed in the same or different bins we obtain the following recursion:

γrn = n
r−2∑
j=0

(
r − 2
j

)
γr−2−j
n−1 + n(n− 1)

r−2∑
j=2

(
r − 2
j

) (
2j − 2

)
γr−2−j
n−2 .

It is clear, after reindexing the sum in the second term of the right-hand side of the recursion, that
to verify the inductive step it suffices to show:

rr/2nr/2 ≥ n
r−2∑
j=0

(
r − 2
j

)
(r − 2− j)(r−2−j)/2(n− 1)(r−2−j)/2

+ n(n− 1)
r−4∑
j=0

(
r − 2
j + 2

) (
2j+2 − 2

)
(r − 4− j)(r−4−j)/2(n− 2)(r−4−j)/2.

Observe for the range of r and j under consideration(
r − 2
j + 2

) (
2j+2 − 2

)
(r − 4− j)(r−4−j)/2 ≤

(
r − 4
j

)
2j(r − 2)(r − 3)(r − 4)(r−4−j)/2.

Applying the binomial theorem we see it suffices to show

rr/2nr/2 ≥ n
[
1 +

√
(r − 2)(n− 1)

]r−2
+ n(n− 1)(r − 2)(r − 3)

[
2 +

√
(r − 4)(n− 2)

]r−4
. (18)

Further observe for our range of r and n,

1 +
√

(r − 2)(n− 1) ≤
√
rn, (19a)

2 +
√

(r − 4)(n− 2) ≤
√
rn. (19b)
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The inductive step may be verified upon substitution of inequalities (19) into (18). �

Proof of Lemma 6. Let Y i = Xi − µ. Then, it suffices to verify

E

(
n∑
i=1

Y i

)r
≤ E|Y 1|r

(√
rn
)r
.

Let k = (k1, . . . , kn),Rn = {k :
∑n

i=1 ki = r, k ≥ 0}, andR−n = {k : k ∈ Rn, ki 6= 1, i = 1, . . . , n}.
Now,

E

(
n∑
i=1

Y i

)r
=
∑
k∈Rn

r!
k1! · · · kn!

n∏
i=1

E(Y 1)ki ≤ E|Y 1|r
∑
k∈R−n

r!
k1! · · · kn!

since

max
k∈Rn

n∏
i=1

E(Y 1)ki ≤ E|Y 1|r. (20)

Inequality (20) follows from the fact that
[
E|Y 1|s

]1/s is nondecreasing on [1, r]; see, e.g., Casella

and Berger (1990, p.180). It remains to show∑
k∈R−n

r!
k1! · · · kn!

≤
(√
rn
)r
,

which follows immediately from Lemma 5. �

Proof of Proposition 8. To prove the convexity result for SW (·, q) it suffices to show

ln

( ∞∑
k=1

exp[−pk2q/r]

)

is convex on {p : p > 0}. With λ ∈ (0, 1) and p, p′ > 0 this amounts to showing

ln

( ∞∑
k=1

exp
[
−
(
λp+ (1− λ)p′

)
k2q/r

])
≤ ln

( ∞∑
k=1

exp
[
−pk2q/r

])λ
+ ln

( ∞∑
k=1

exp
[
−p′k2q/r

])1−λ

.

Taking exponents on both sides we obtain

∞∑
k=1

(
exp

[
−pk2q/r

])λ (
exp

[
−p′k2q/r

])1−λ
≤

( ∞∑
k=1

exp
[
−pk2q/r

])λ
·

( ∞∑
k=1

exp
[
−p′k2q/r

])1−λ

,

which follows from Hölder’s inequality. The proof for convexity of SM (·) is similar; see also part

(ii) of Proposition 5 in Morton (1998), which shows the convexity of ln
(∑∞

k=1 k
−p ln k

)
.

Now we establish the lower bound (17). Fix q > 1. Then,

min
p>0

SW (p, q) ≥ min
p1,...,p∞>0

[
2T ln

(∑∞
k=1 exp[−pkk2q/r]√

2πα

)
+ 2

T∑
k=1

pkk
2q/r

]
. (21)
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The right-hand side of (21) represents a relaxation as we can choose a different p for each k. It

is clearly optimal to set pk = ∞ for k > T , and so the right-hand side optimization reduces to

minp1,...,pT>0 Γ(p1, . . . , pT ), where

Γ(p1, . . . , pT ) =

[
2T ln

(∑T
k=1 exp[−pkk2q/r]√

2πα

)
+ 2

T∑
k=1

pkk
2q/r

]
. (22)

The same type of argument used above to establish convexity of SW (·, q) shows Γ is convex in

(p1, . . . , pT ). Taking partial derivatives of Γ with respect to pk we obtain the following first-order

conditions
T∑T

j=1 exp[−pjj2q/r]
exp

[
−pkk2q/r

]
= 1, k = 1, . . . , T,

and these hold for pk = 0, k = 1, . . . , T . Substitution into Γ gives (17), which is independent

of q and hence a lower bound on minp>0,q>1 SW (p, q). The proof that (17) is a lower bound on

minp>0 SM (p) is similar and hence omitted. �
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