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1. Introduction

Spectroscopy-based chemical classification has a number of critical applications—for example,
defense [1, 2], security [3, 4], and medicine [5, 6]. Traditional spectroscopic approaches, how-
ever, struggle in low signal situations where a small number of signal photons are apportioned
across many detectors. Many of these critical applications fall in this low signal category due
to the weak analyte signatures associated with such tasks. There is also frequently a constant
need for rapid identifications due to the serious repercussions associated with these application
areas, which further limits signal acquisition time.

In this manuscript, an alternate spectrometer architecture is discussed in detail. This novel
architecture, which we call the adaptive feature specific spectrometer (AFSS), overcomes the
limitations posed by the traditional approaches. Unlike the traditional systems where measure-
ments are made by sampling across each spectral channel, the AFSS makes use of feature-based
measurements wherein the feature vectors are adaptively reconfigured based on the information
gathered from each measurement. The decision model used by this alternate design is based on
sequential hypothesis testing—a multiple measurement framework, which constantly moni-
tors the quality of information obtained after each measurement. Early simulation results have
shown significant performance gains over the traditional spectrometers in the low SNR regions.
An experimental prototype was constructed to validate the findings of our simulations. The
experimental setup, assumptions and results are presented and discussed below.

It should be noted that what we propose here is a feature-based measurement architecture to
improve the classification efficiency of spectrometers in the low SNR regime. Specific design
choices for the AFSS were made at a practical level in order to test our simulations with a work-
ing laboratory system. This architecture can be applied to any context to which one might apply
traditional spectroscopy. We believe the demonstrated performance gains to be qualitatively in-
dependent of choices such as wavelength range, spectral resolution, decision framework, error
thresholds, and spectral library content.

2. Feature specific spectroscopy

A variety of chemical classification schemes already exist [7, 8], many of them based on optical
spectroscopy [9, 10]. In traditional spectroscopy, the spectral channels are sampled individually
and a noise contribution is associated with each of the channels. The traditional measurement
vector mt is therefore mathematically represented as:

mt = s+nt , (1)

where s is a length-p column vector corresponding to the incoming spectrum to be classified and
nt denotes a length-p column vector where each element corresponds to the noise contribution
associated with the individual spectral channels (assumed below to be zero-mean AWGN with
standard deviation σn). The primary task of spectral classification involves the determination
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of the best match for the spectrum s from a given spectral library S. S is a known p× r library
with r the number of spectra present.

Feature specific measurements have proven to be a very good alternative to traditional
measurement schemes, especially in the imaging domain where considerable performance gain
has been reported [11, 12]. These are multiplexed measurements [13] wherein the incoming
spectrum s is optically projected onto an arbitrary feature vector before making the measure-
ment. The feature specific measurement mp is given by:

mp = Ps+np, (2)

where P is a q× p projection matrix consisting of q length-p feature vectors. Here, np is a
length-q column vector corresponding to the noise (again AWGN with standard deviation σn).
Since the projection of the incoming spectrum onto an arbitrary basis vector may be viewed
as a linear combination of the individual spectral components, the overall signal strength of
the measurement is increased relative to the noise contribution. This multiplexing improves the
measurement SNR considerably when compared with the traditional measurements.

3. Detection frameworks—Sequential hypothesis testing

Matched-filter based detection frameworks [14, 15], where the unknown spectrum is corre-
lated with a given spectral library S and the largest result is identified as the best match, are
the simplest means of classifying spectra. Matched filter concepts prove challenging in low
SNR applications, however. In such scenarios, a single measurement is frequently not enough
to decide in favor of a definite hypothesis. In addition, they are sub-optimal when consider-
ing more than two hypotheses. A number of static multiple-measurement frameworks based on
Neyman-Pearson [16, 17] or Bayesian [18] criteria exist in which the number of measurements
is decided a priori. However, such techniques have some disadvantages—due to the fixed num-
ber of measurements, the process may terminate prior to reaching a desired confidence, or may
waste time taking additional measurements even though the desired confidence level has been
reached.

Sequential hypothesis testing (SHT) [19] is a technique which overcomes these limitations
by constantly monitoring the quality of information obtained after each measurement. The like-
lihood ratios of the competing hypotheses are evaluated after each measurement and are com-
pared with decision thresholds set by the user. The decision thresholds may be formulated using
standard Neyman-Pearson or Bayesian criteria using the desired error tolerances. Wald initially
proposed the concepts of SHT for binary hypotheses. This was later extended to multiple hy-
potheses by Armitage [20]. This is described below.

Considering two hypotheses H0 and H1, the conditional probabilities of the hypotheses given
a series of k feature-specific measurements {mp}k may be expressed in terms of the likelihoods
using Bayes’ theorem as:

PrH0|{mp}k =
L0,kPrH0

Pr{mp}k
and PrH1|{mp}k =

L1,k PrH1

Pr{mp}k
. (3)

The likelihood of the ith hypothesis is given by Li,k which is formulated as follows:

Li,k = Pr{mp}k|Hi. (4)

The ratio of the two conditional probabilities discussed may be expressed in terms of like-
lihood ratio Λ and the prior probabilities of the two hypotheses. The probability ratio may be
written as:

Λk =
PrH0|{mp}k

PrH1|{mp}k
=

L0,k

L1,k

H0

H1
= L01,k

H0

H1
. (5)
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L01,k is essentially the likelihood ratio and in most cases the hypotheses are assumed to be
equiprobable. Hence,

Λk = L01,k. (6)

If the measurement at each iteration is given by {mp}k, a very generalized update procedure
for the likelihood ratios Λk may be designed. The likelihood ratio at the kth step may be written
as:

Λk = L01L01,k−1, (7)

as the likelihoods are the conditional probabilities which may be updated as follows:

Li,k = PrHi|mp PrHi|{mp}k. (8)

Standard Neyman-Pearson criteria may be used to determine the decision thresholds Θ0 and
Θ1 and the decision may then be made in the following fashion:

Decide in favor of H0 if Λk > Θ0

Decide in favor of H1 if Λk < Θ1

Do not make a decision and make another measurement if Θ1 ≤ Λk ≤ Θ0.

3.1. Extension of SHT to multiple hypotheses

For the case of w hypotheses where w > 2, the likelihood ratios may be updated as:

Λi, j;k = Li j,mΛi, j;k−1, (9)

where Λi, j;k now is the i, jth element of a w × w likelihood ratio matrix Λ. The ele-
ments of the Λ matrix are the pairwise likelihood ratios and represent the probability ratios
PrHi|{mp}k/PrHj|{mp}k. All the elements in a single row (except the diagonal elements) are
compared with the respective thresholds to decide in favor of a particular hypothesis. The deci-
sion making process may be formulated as follows:

Decide in favor of Hi if Λi, j;k > Θi ∀ i �= j
Do not make a decision and make another measurement otherwise.

It should also be noted that Λi, j;k =
1

Λ j,i;k
by construction which ensures that only one hypothesis

satisfies the test at a particular instance.

4. Adaptivity

A number of ad hoc techniques exist which may be used for synthesizing the feature vectors so
that increased discrimination between the spectral projections is achieved. Principal component
analysis [21] proves to be a reasonable choice in this regard, as the first principal component
captures the direction of greatest variance among the competing spectra, the second component
provides the direction of greatest remaining variance and so on. However, it is important to
note that feature decomposition based on principal component analysis is ad hoc in nature. It is
possible to find a set of k features which are more discriminatory than the first k principal com-
ponents. The current AFSS system utilizes feature vectors synthesized via principal component
analysis; we are working on techniques for determining optimal feature vectors.

In the traditional implementation of the sequential hypothesis testing, the probabilistic infor-
mation gained after each measurement is not used. We can improve performance by using this
information to adapt the features as the measurement process proceeds. If the bth spectrum in
the spectral library S is denoted by Sb, then the mean spectrum S̄ is given by:

S̄ =
1
r

r

∑
b=1

Sb. (10)
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The first q principal components are defined as the q eigenvectors of the signal covariance
matrix C corresponding to the q largest eigenvalues given by:

C =
r

∑
b=1

(Sb − S̄)(Sb − S̄)T . (11)

In order to implement the probabilistic information gained after each measurement, the likeli-
hood ratios are used to evaluate the probability estimate of a hypothesis Hj given a series of k
measurements {mp}k:

PrHj|{mp}k =
1

∑m
i=1 Λi, j;k

, (12)

where Λi, j;k is the i, jth element of the likelihood ratio matrix Λk. The i, jth element of the
likelihood ratio matrix is given by:

Λi, j;k =
PrHi|{mp}k

PrHj|{mp}k
. (13)

Essentially, all the elements in a single column have been summed and normalized to determine
the denominator in the elements of the particular column.

The probability estimates may be used to determine the probability weighted covariance
matrix Qk also known as the inter-class scatter matrix,

Qk =
m

∑
b=1

PrHb|{mp}k(Sb − S̄)(Sb − S̄)T , (14)

with the mean spectrum S̄ now the probabilistically-weighted mean given by:

S̄ =
1
m

m

∑
b=1

PrHb|{mp}kSb. (15)

The q eigenvectors of the inter-class scatter matrix [22] corresponding to the q largest eigenval-
ues are used as the feature vectors of our choice. The projection of the spectral library onto these
feature vectors yields improved discrimination among the hypotheses which are probabilisti-
cally still in serious contention. Figure 1 shows a block diagram illustrating the step by step
procedure of the measurement and detection scheme involved in the adaptive feature specific
spectrometer.

5. Simulation results

We characterize the difficulty of a classification task using a metric we call task SNR (TSNR).
TSNR is defined as the ratio of the class separation of the spectral library to the standard de-
viation of noise, where the class separation is represented by the minimum pairwise Euclidean
distance between spectra in the library:

σl = min |sis j|. (16)

Assuming the noise contribution to be AWGN with standard deviation σn, the task SNR is

TSNR = 10log
σl

σn
. (17)

At each desired TSNR, 500 simulations were performed and a new random library of class
size 5 was chosen from a set of 200 different Raman pharmaceuticals spectra. It was assumed
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Fig. 1. The block diagram illustrates the measurement and decision framework in an AFSS
system. The knowledge gained after each measurement is fully used by adaptively recon-
figuring the feature vectors.

that a 1% chance of a false positive and 1% chance of a miss are acceptable. A traditional system
was simulated along with a static feature specific system and an AFSS system. The features
were synthesized from the eigenvectors of the inter-class scatter matrix (e.g. probabilistically-
weighted PCA). For the purpose of all our simulations and experiments, we assumed q = 1 i.e.
we always work with the first principal component. In order to physically realize the feature
vector which contains both positive and negative weights, we decomposed the features into two
separate components—one consisting of just the positive weights and the other just the negative
weights. This dual rail implementation has some noise implications due to the presence of
two individual noise contributions. The measurements m+ and m− corresponding to these two
vectors are given by:

m+ = p+s+n1(σ1) and m− = p−s+n2(σ2), (18)

where p+ and p− are the decomposed feature vectors, n1 and n2 are the two decomposed noise
vectors, and s is the incoming spectrum. The actual measurement is obtained by finding the
difference m+ −m− which will be associated with a noise contribution

√
2σn. The positive

and negative elements of the feature vectors were also scaled to 1 and -1 respectively in order
to accurately reflect the operation of a non-grayscale DMD. This binary scaling introduces the
following trade-off: the implemented projections capture more light (each channel is ultimately
collected at full strength), but the projection direction is potentially modified to some extent
from the direction of the principal component. More detailed analysis of this tradeoff will be
addressed in a future publication.

Figure 2 shows the simulation results. The traditional system behaves in the expected
manner—the average time to classification increases with a decrease in the task SNR. In fact,
for every 10 dB decrease in the task SNR, there is 10× increase in the average time to detection.
The performance of a static feature-based system is also highlighted wherein a constant feature
synthesized prior to the first measurement is repeatedly used. Such static feature-based systems
definitely improve on the traditional systems in the low TSNR regions due to the multiplexing
advantage gained. However, the relative performance gain is not very dramatic.
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Fig. 2. The plot compares the performance of the AFSS with a static feature specific spec-
trometer and a traditional spectrometer.

The performance of the AFSS system, on the other hand, is very encouraging. At low TSNR,
we can clearly observe that the average time to classification falls by a factor of close to 150
when compared with the traditional systems. At -50 dB, the AFSS system needs approximately
700 measurements to make a classification when compared with the 105 measurements required
by the traditional systems. The performance curves of the traditional and the AFSS system
cross each other near the 10 dB point. In the high TSNR region (10 dB – 50 dB), we can
clearly see that the AFSS system is worse by a factor of 2 when compared with the traditional
systems. This is a result of the dual rail implementation of the feature vectors. In spite of the
noise implications of the dual rail implementation, the AFSS easily outperforms its traditional
counterpart in the low TSNR regions. It is reasonable to consider the impact of the chosen
error rate on the performance of the AFSS. However, as both the AFSS and traditional system
utilize the same decision framework, the impact is expected to be similar in both cases, leaving
the performance gain of the AFSS qualitatively unchanged. This belief is supported by initial
investigations with other error rates.

6. Experimental implementation

The optical design of the AFSS prototype is based on a traditional dispersive spectrometer
where the linear detector array is replaced by an adaptive element which multiplexes the re-
quired optical signals on to a large area photoreceiver. The AFSS prototype is designed to op-
erate in a wavelength range of 470–630 nm. Figure 3 shows a schematic of the AFSS system.
Zemax was used to optimize the optical design and a prescription showing the specifications of
the optical components involved in the AFSS prototype design are tabulated in Table 1.

Figure 4 illustrates a block diagram showing the basic functional blocks constituting the
AFSS prototype. The central component of the prototype is the adaptive spectral filter which
aids in multiplexing certain spectral bands and directing them on to a single element photode-
tector. The adaptive spectral filter of our choice is a digital micro-mirror device (DMD) which
has been extracted from a Pico Projector Development Kit from Texas Instruments.

The active mirror array in our DMD measures 2.4 mm × 3.6 mm. The individual mirrors on
the DMD measure 7.56 μm × 7.56 μm and can tilt by approximately 12◦. The DMD has an
efficiency of 68% over a wavelength range of 420–700 nm. The individual mirrors on the DMD
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Fig. 3. Schematic illustrating the working of an AFSS system and the optics involved in its
design.

Fig. 4. The important components of an AFSS system are shown in this block diagram.
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Table 1. Edmund Optics Part Numbers of the Optical Components Used in the AFSS
Prototype and Their Specifications

Optical component Part number Specification 1 Specification 2
Lens 1 47670 Diameter = 12.5mm Focal length = 80mm
Lens 2 47670 Diameter = 12.5mm Focal length = 80mm
Lens 3 47710 Diameter = 18mm Focal length = 75mm
Lens 4 47705 Diameter = 18mm Focal length = 30mm
Mounted slit 58541 Slit width = 25μm —
Diffraction grating 49575 Period = 300 grooves/mm —

are appropriately controlled to implement the different feature vectors required for the adaptive
feature specific measurements.

The DMD has a resolution of 480 × 320 (HVGA resolution). The DMD chipset [23] consists
of a DPP1505 processor which performs the HVGA DMD data formatting and control. An ultra
low power 16 bit RISC mixed signal microcontroller is also part of the chipset. The RGB LED
array which acts as the light source for the projector has been replaced with a bypass circuit
to enable the elimination of any stray light and protect the chipset against any excessive heat
from the LED array. The mirrors are controlled using a Beagleboard, a low power embedded
computer based on an ARM Cortex A8 processor.

The Beagleboard engages in bi-directional communication with the computer via TCP/IP
sockets. The feature vectors are synthesized by the computer before being transmitted to the
Beagleboard which performs the data and image processing and transmits the appropriate pat-
terns to the DMD. The patterns transmitted to the DMD have a VGA resolution (640 × 480) as
the DMD chipset is designed to accept only VGA input. The VGA-HVGA down-sampling is
handled by the processor in the DMD chipset so that the appropriate mirrors are controlled.

A New Focus 2031 large area photoreceiver is used to collect the multiplexed spectral sig-
nals and a National Instruments USB6259 DAQ board is utilized for the data acquisition. The
digitized signals are then recorded by the computer for further processing and analysis. New
feature vectors are generated if the evaluated likelihood ratios are still in the intermediate re-
gions with regard to the decision thresholds. The 3D modelling for the different optical mounts
and the system enclosure was done using Solidworks. Figure 5 illustrates the Solidworks model
of the AFSS optical device and Fig. 6 is a snapshot of the optical system with all the optical
components mounted.

6.1. Calibration and library design

The experiment also includes some additional hardware which is of great importance for cal-
ibration and signal recovery. A detailed functional block diagram of the AFSS system along
with this additional hardware is shown in Fig. 7. A photograph of our entire system along with
all the additional hardware is also shown in Fig. 8.

To provide flexibility and adjustability, a spectral library consisting of the spectral informa-
tion of different combinations of red, green and blue LEDs in an RGB LED array [24] was
designed and used in the experimental trials. The LED array allowed us to present the system
with a much wider range of source spectra than is tractable with physical samples. A dimmer
circuit was designed to vary the intensity of the individual LEDs. Due to the different spatial
location of the individual LEDs in the array, an integrating sphere was used to uniformly mix
the light from the three LEDs. A sample 5 class LED library which was used in our experi-
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Fig. 5. 3D model showing the optics involved in the AFSS design, the spectral filter and
the mounts.

Fig. 6. A photograph showing the AFSS experimental prototype.
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Fig. 7. A block diagram illustrating the different functional elements involved in the AFSS
prototype along with all the additional hardware which aids in improving the system SNR.

Fig. 8. A snapshot showing the AFSS prototype along with the optical chopper and the
lock-in amplifier.
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ments is depicted in Fig. 9. Unfortunately, the signal strength of the LED source spectrum is
very weak due to the broadband nature of the spectrum and the transmission loss associated
with the integrating sphere.
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Fig. 9. A sample class size = 5 LED spectral library.

6.2. Improving the system SNR

In order to calibrate the AFSS system, it is necessary to determine the response of the system
to each element of the feature vector where each element corresponds to a column of mirrors
on the DMD. Working with a length-640 feature vector makes sense as the DMD is designed
to accept only VGA inputs. Individual rows of a calibration matrix C (a 640 × 640 identity
matrix) are transmitted to the DMD and measurements (Me) are recorded for each case which
are given by:

Me = CSe, (19)

where Se is the incoming spectrum from the LED array. In order to overcome the limitations
posed by the signal strength of the source spectrum, we considered blocks of columns to im-
prove the overall system SNR. A block size of 4 proved to be ideal for the purpose of the
experimental validation. A better system SNR was achieved by using S-matrix based signal
reconstruction techniques for calibrating the AFSS system. S-matrices with very low condi-
tion numbers were used to make multiplexed measurements which provide significant SNR
advantage. The measurements using the S-matrix based calibration scheme is given by

M = CSe +ne, (20)

where M is the measurement vector, C corresponds to the new calibration matrix which is the
S-matrix of appropriate size, Se is the incoming LED spectrum and ne corresponds to the noise
contribution. The multiplexed measurements may then be used to synthesize the LED spectrum
by accurate reconstruction given by

Ŝe = C−1M, (21)

where Ŝe corresponds to the measured LED spectrum and C−1 is the inverted calibration matrix.
The noise contribution is very negligible.

An optical chopper is used alongside a lock-in amplifier to further amplify and recover the
weak optical signals. The optical chopper used in our experiment is a SR540 from Stanford
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Research Systems. The reference frequency is set at 800 Hz and is fed to a SR810 lock-in
amplifier again from Stanford Research Systems. The settings of the lock-in amplifier are con-
trolled using Matlab on the computer through the NI GPIB controller board. It is important to
note that this additional hardware is not an essential part of the AFSS system but is just used to
improve the system SNR for this particular proof of principle experiment.

7. Noise settings and experimental results

A master library consisting of 15 different spectra corresponding to different combinations of
the red, green and blue LEDs was designed. A five class spectral library was chosen at random
for each experimental trial with a random spectrum from this smaller library chosen as the
source spectrum. Acceptable error rates were set in the same manner as in the simulations—
1% chance of false positive and 1% chance of a miss.

The feature vectors were synthesized and the positive weights and the negative weights were
scaled to 1 and -1 respectively. In order to implement the feature vectors physically using the
DMD, the projection vectors were decomposed into two—one with just the positive weights and
one with just the negative weights. The measurements corresponding to the two complimentary
vectors were then recorded using the DAQ and the difference between the two measurements
was evaluated to continue with the decision making process. The noise implications of the dual
rail implementation of the feature vectors were already discussed in Section 1. As with the
simulations, 500 experimental trials were performed at each desired TSNR level.
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Fig. 10. A plot showing the variation of the samples per trigger acquired by the data acqui-
sition board with the noise standard deviation.

To vary the effective TSNR, we injected noise into the AFSS system by varying the quality
of measurements sampled by the DAQ. The DAQ is ideally configured to sample the measure-
ments at 1 KHz. The noise contribution may be varied by changing the time of data acquisition
of the DAQ. A random feature pattern was transmitted to the DMD and the number of samples
per trigger was studied as a function of the standard deviation of the measurements over a pre-
defined period of time. Figure 10 illustrates this plot on a logarithmic scale along with a linear
fit to the curve. The linear fit may be characterized by the following equation:

logy =−0.48329logx+0.29035, (22)

where x is the samples per trigger and y is the noise parameter. Once, the desired task SNR is
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set, the necessary standard deviation of noise may be evaluated using the class separation of the
spectral library as follows:

σn = σl exp(
−TSNR

10
), (23)

where σn is the noise standard deviation and σl is the class separation. The number of sam-
ples which needs to be acquired per trigger may be then set on the DAQ using the following
equation:

x = 1.8235y−2.069. (24)

The experiments were completed using the above scheme and the results were used to vali-
date our theoretical findings. Figure 11 shows the performance of the AFSS system when com-
pared with a traditional system. It is clearly evident that the experimental results match very
closely with simulation. However, the observed performance gain of the AFSS on the LED
spectra is reduced to ≈ 15× compared to ≈ 150× with pharmaceutical spectra. Two significant
differences exist between the two cases. First, the dimensionality of the spectra in the library
is different (1300 spectral channels for the pharmaceuticals, while only 159 for the LEDs as
a result of limitations imposed by the size of the available mirror array and strength of the
LED source). Second, the details of the spectra are rather different, with the LED spectra being
slowly-varying and the pharmaceutical spectra having many sharp peaks. To investigate what
was behind the difference in performance gain, we downsampled the pharmaceutical library to
159 spectral channels and re-ran the simulation. Figure 12 compares the performance of the
LED experiment and the new simulation with downsampled pharmaceutical spectra. The close
agreement between the curves suggests strongly that the performance gain is dominated by the
dimensionality of the spectra and not their specific details.

Fig. 11. A plot validating the performance of the AFSS. The experimental results match
very closely with the simulation results and is shown to perform better than the traditional
systems at the low task SNR regions.

To further explore this issue, we performed a series of simulations where the performance
gain of the AFSS at a TSNR of -30dB was determined using downsampled pharmaceutical
libraries of varying lengths. Figure 13 shows the result—the performance gain achieved by
the AFSS decreases approximately linearly with the decrease in the dimension of the spectral
library.
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Fig. 12. The performance curves for a broadband LED spectral library and a down-sampled
version of the Raman spectral pharmaceuticals library.

Fig. 13. A plot showing the linear variation of the performance gain of the AFSS over its
traditional counterpart with the dimensionality of the spectral library under consideration.
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8. Future work and conclusion

We have discussed a novel chemical detection scheme based on adaptive feature specific spec-
troscopy. Simulation results with regard to a pharmaceuticals library illustrated that AFSS sys-
tems perform dramatically better than traditional systems. Using a digital micro-mirror device
as the primary adaptive element, an AFSS system was designed and used to validate our the-
oretical findings. The experimental results using a custom LED spectral library matched the
results of our simulations very closely. The results clearly stress the benefits of such an adap-
tive system with regard to classification time in extremely critical application areas like defense,
security and medicine.

There is always a possibility of finding a set of unique feature vectors which are more dis-
criminatory in nature when compared with the ones synthesized using principal component
analysis (it has already been stated that feature vectors based on principal components are es-
sentially ad hoc in nature). Further research is being carried on in this regard to determine the
globally optimal feature vectors. Information optimal features have already been designed and
implemented in the imaging domain where they have proven to perform better than the adaptive
feature specific schemes in the low task SNR regions [25].

The variation of the performance of the AFSS system as a function of the size of the library is
currently being studied. Such spectroscopic techniques may also be made to maximum use by
utilizing such setups to perform operations like concentration estimation and other parameter
estimation with respect to the chemicals being investigated.
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