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An Explicit Construction of PMDS (Maximally
Recoverable) Codes for All Parameters

Gokhan Calis and O. Ozan Koyluoglu

Abstract—PMDS (a.k.a. maximally recoverable) codes allow
for local erasure recovery by utilizing row-wise parities and
additional erasure correction through global parities. Recent
works on PMDS codes focus on special case parameter settings,
and a general construction for PMDS codes is stated as an open
problem. This paper provides an explicit construction for PMDS
codes for all parameters utilizing concatenation of Gabidulin
and MDS codes, a technique orginally proposed by Rawat et al.
for constructing optimal locally repairable codes. This approach
allows for PMDS constructions for any parameters albeit with
large field sizes. To lower the field size, a relaxation on the
rate requirement is considered, and PMDS codes based on
combinatorial designs are constructed.

Index Terms—MDS Codes, Partial MDS Codes, Maximally
Recoverable Codes, Gabidulin Codes, Combinatorial Designs.

I. INTRODUCTION

Redundant array of independent disks (RAID) [1] archi-
tecture is used to prevent systems from data loss in case of
catastrophic failures (disk failure). Popular RAID schemes
include RAID 4 (one disk dedicated to parities), RAID 5
(parities are distributed to disks) and RAID 6 (similar to RAID
5 but includes second parity scheme). Maximum distance
separable (MDS) codes, i.e., Reed-Solomon codes, can be
utilized for erasure correcting in RAID systems, i.e., in RAID
6 to overcome the failure of two disks. However, using
solid-state drives (SSDs) (instead of hard disk drives (HDD))
brought challenges, e.g., the system may experience both disk
failures and hard errors which may not be realized unless the
specific sector is accessed. RAID 6 architecture can tolerate
such an erasure pattern, i.e., it can tolerate two sector erasures
in a disk. However, the cost of recovery is expensive and
partial MDS (PMDS) codes are proposed to overcome this
problem by utilizing both row-wise parities and global parities
to simultaneously recover from mixed failures [2].

PMDS codes tolerate mixed failures consisting of column
failures (referring to a disk) in an r × n array and additional
failures (sectors). Each row in the array forms an MDS code,
i.e., each row forms a local group for erasure correction of up
to m symbols. Considering r × n array over a finite field F,
PMDS codes have the following properties [3].
• m entire columns of elements are devoted to coding.
• Each row is an [n, n−m,m+ 1] MDS code.
• In the remaining n − m columns, s more elements are

also devoted to coding.
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• Any m elements per row plus any additional s erasures
in the array can be recovered.

PMDS codes are labeled with (m; s) and formal definition
is given as follows [3].

Definition 1. Let C be a linear [rn, k] code over a field such
that when codewords are taken row-wise as r×n arrays, each
row belongs in an [n, n−m,m+1] MDS code. C is an (m; s)
partial MDS (PMDS) code if, for any (s1, s2, . . . , st) such that
each sj ≥ 1 and

∑t
j=1 sj = s, and for any i1, i2, . . . , it such

that 0 ≤ i1 < i2 < · · · < it ≤ r − 1, C can correct up to
sj +m erasures in each row ij , 1 ≤ j ≤ t.

PMDS codes draw attention recently and code constructions
are proposed in the literature, however, the parameter set
((m; s) values) is limited. Explicit constructions are provided
in [4], [5] for (m; s) = (1; 1) and (m; s) = (≤ 2; 2), in [2],
[6] for (m; s) = (≥ 1; 1), in [7] for (m; s) = (≥ 1; 2),
in [8] for (m; s) = (1; 3) and (m; s) = (1; 4), in [2] for
(m; s) = (1;≥ 1) and in [9] for (m; s) = (≥ 1; 1). In all
these explicit PMDS constructions, m or s is set to be 1 or 2.

Coding schemes that can be considered as relaxations to
erasure recovery properties of PMDS codes include SD codes,
STAIR codes, and t-level Generalized Concatenated (GC)
codes. Sector Disk (SD) codes are defined similar to PMDS
codes with only difference being that SD codes tolerate the
erasure of any m columns plus any additional s symbols in
the array [3], [5]. In STAIR codes [10], the number of disks
that may simultaneously fail containing sector failures as well
as the number of sector failures per disk are limited. Sector
failure coverage is defined by a vector e, and STAIR codes
can tolerate any m column failures plus total of s sector
failures in the remaining n − m columns defined by e. t-
level Generalized Concatenated (GC) codes [6] defined by
their parity-check matrix H(n;u) as a relaxation of PMDS
codes in which the erasure pattern is defined by a vector u.
For example H(5; (2, 2, 3, 3)) code can tolerate any 2 erasures
per row from any 2 rows plus any 3 erasures per row from
the remaining two rows.

Locally repairable codes (LRCs) has been studied recently
[11]–[14] and these codes allow a recovery of a symbol within
a corresponding local group, which usually has small number
of nodes. Since recovery only requires small number of nodes,
LRCs are shown to be useful in reducing cost of recovery.
We remark that dmin-optimal LRCs necessarily have disjoint
local groups, which make them as candidates for constructing
PMDS codes. However, this approach (utilizing dmin-optimal
LRCs) produces PMDS codes only for special parameter
settings.
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In this study, we first propose an explicit PMDS code con-
struction for all parameters using concatenation of Gabidulun
and MDS codes, a technique originally proposed in [13] for
constructing optimal locally repairable codes. Gabidulin codes
are introduced in the following section, and the general PMDS
construction along with examples are detailed in Section III.
Then, to lower the field size requirement of this approach, we
develop rate suboptimal PMDS constructions using combina-
torial designs in Section IV. In particular, we will refer to the
PMDS definition given above as rate-optimal PMDS, where
the corresponding rate is R∗ = r(n−m)−s

rn as k = r(n−m)−s,
and compare this optimal rate with those of codes that we
construct based on combinatorial designs.

II. MAXIMUM RANK DISTANCE (MRD) CODES

MRD codes can be described either in a vector or in a
matrix notation. We provide both presentations here. Before
formally defining these codes, we first define column rank,
rank distance, and linearized polynomials; and, then, provide
the construction of Gabidulin codes.

Definition 2 (Column rank). For a given basis of FqM over
Fq , the column rank of a vector v ∈ FNqM over the base field
Fq , denoted by Rk(v|Fq), is the maximum number of linearly
independent coordinates of v over the base field Fq .

We note that a basis also establishes an isomorphism
between N -length vectors, in FNqM , to M × N matrices,
in FM×Nq . (To be more explicit, this is the mapping of
v ∈ F1×N

qM to V ∈ FM×Nq by writing out each element
in v = {v(1), · · · , v(N)}, v(i) ∈ FqM , using the given
basis, as a vector v(i) ∈ F1×M

q ; and, constructing the matrix
V = [v(1)T , · · · ,v(N)T ].) In addition, for the given basis,
the column rank Rk(v|Fq) is equal to rank(V), the rank of
the corresponding matrix of v. We will utilize this connection
to provide a matrix interpretation of MRD codes.

Definition 3 (Rank distance). Rank distance between two
vectors is defined by dR(v1,v2) = Rk(v1 − v2|Fq).

Rank distance is a metric [15]. In matrix representation,
this distance metric is equivalent to the rank of the difference
between the corresponding matrices of the two vectors, i.e.,
Rk(v1−v2|Fq) = rank(V1−V2). Rank metric codes utilize
the definition given above as the underlying metric.

Definition 4 (Matrix (array) code). A matrix code is defined
as any nonempty subset of FM×Nq . (This is also called array
code [16].)

Rank-metric code is a matrix (array) code, where the
distance is the rank distance. The minimum distance of a rank-
metric code C ⊆ FM×Nq is given by

dR(C) = min
v1,v2∈C;v1 6=v2

dR(v1,v2). (1)

Remark 5 (Transposed code). The transposed code of a given
rank-metric code C ⊆ FM×Nq is given by CT = {vT : v ∈
C} ⊆ FN×Mq , and is also a rank-metric code. Remarkably,
|C| = |CT | and dR(C) = dR(CT ).

As that of the codes for Hamming metric, one can provide
a Singleton bound for the rank-metric codes.

Lemma 6 ( [15], [17]). Consider a rank-metric code C ⊆
FM×Nq with minimum distance dR(C) = D. Then,

logq(|C|) ≤ min{M(N −D + 1),M(N −D + 1)}. (2)

Proof. Reader may refer to [15], [17] for the proof.

The codes that achieve the bound in (2) are called maximum
rank distance (MRD) codes. Gabidulin presented a construc-
tion of such codes for N ≤ M [15]. By transposition of the
codes obtained by the Gabidulin construction, one can also
obtain codes with M ≥ N . Thus, MRD codes exist for all
D ≤ min{M,N}. Before providing the Gabidulin construc-
tion of MRD codes, we introduce linearized polynomials.

Definition 7 (Linearized polynomial). A linearized polynomial
f(g) over FqM of q-degree K − 1 has the form

f(g) =

K−1∑
i=0

cig
[i],

where the coefficients ci ∈ FqM , ck−1 6= 0, and [i] = qi.

We note that the linearized polynomial satisfies f(a1g1 +
a2g2) = a1f(g1) + a2f(g2), for a given a1, a2 ∈ Fq and
g1, g2 ∈ FqM . We now provide Gabidulin construction of
maximum rank distance (MRD) codes.

Definition 8 (MRD (Gabidulin) codes). An [N,K,D] MRD
code CMRD over the extension field FqM where M ≥ N
• has length-K input u0, · · · , uK−1 where ui ∈ FqM , i =

0, · · · ,K − 1, and
• encodes the input to length-N codewords by

xj = f(gj) =

K−1∑
i=0

uig
[i]
j ,

for j = 1, · · · , N , where the linearized polynomial
is constructed with N linearly independent, over Fq ,
generator elements {g1, · · · , gN} with gj ∈ FqM ; and
its coefficients are selected by the length-K input vector.

We note that, the above code can be represented with a
generator matrix representation, where x = uG with G =

[g1, · · · , gN ; · · · ; g[K−1]1 , · · · , g[K−1]N ].
Note that, symbol erasures in the vector representation of a

codeword in the Gabidulin code correspond to column erasures
in the matrix representation. Here, any non zero code (vector)
has a rank (norm) of at least N −K +1. Thus, the Gabidulin
code achieves a rank distance of D = N −K + 1, which is
the maximum achiveable, and can correct D−1 erasures. The
construction above is referred to as the Gabidulin construction
of MRD codes, or, simply, Gabidulin codes [15]–[18].

III. A GENERAL CONSTRUCTION FOR PMDS CODES

Recently, a concatenation of MRD and MDS array codes
are utilized for coding in distributed storage systems. This
approach is used for constructing locally repairable codes
(with and without security or bandwidth efficient local repairs)
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in [13], locally repairable codes with minimum bandwidth
node repairs in [19], thwarting adversarial errors in [20],
[21], and cooperative regenerating codes with built-in security
mechanisms against node capture attacks in [22]. We utilize
the same concatenation approach here to construct partial
MDS (PMDS) codes.
Construction I. [An (m;s) PMDS code over an array of
(r, n) symbols (r rows and n columns)] Set K=r(n-m)-s, and
consider data symbols {u0, · · · , uK−1}.
• Use [N=K+s,K,D=s+1] Gabidulin code to encode
{u0, · · · , uK−1} to length-N codeword (x1, · · · , xN ).
That is,

(x1, · · · , xN ) = (f(g1), · · · , f(gN )),

where the linearized polynomial f(g) = u0g
[0] + · · · +

uK−1g
[K−1] is constructed with N linearly indepen-

dent, over Fq , generator elements {g1, · · · , gN} each
in FqM ; and its coefficients are selected by the length-
K input vector. We represent this operation by writing
x = uGMRD.

• Split resulting N=K+s=r(n-m) symbols {x1, · · · , xN}
into r rows each with n-m symbols. We represent this
operation by double indexing the codeword symbols, i.e.,
xi,j is the symbol at row i and column j for i = 1, · · · , r,
j = 1, · · · , n−m. We also denote the resulting sets with
the vector notation, xi,1:n−m = (xi,1, xi,2, · · · , xi,n−m)
for row i.

• Use an [n,k=n-m,d=m+1] MDS array code for each row
to construct additional parities. Representing the output
symbols as yi,1:n we have

yi,1:n = xi,1:n−mGMDS

for each row i, where GMDS is the encoding matrix
of the MDS code over Fq . For instance, if a system-
atic code is used, xi,1:n−m is encoded into the vector
yi,1:n = (xi,1, · · · , xi,n−m, pi,1, · · · , pi,m) for each row
i = 1, · · · , r.

To summarize, we have

y =


y1,1:n

y2,1:n

...
yr,1:n

 =


GMDS

GMDS
. . .

GMDS



=


x1,1:n−mGMDS
x2,1:n−mGMDS

...
xr,1:n−mGMDS


(3)

The resulting codeword symbols are represented in the
following symbol matrix representation:

y1,1 y1,2 · · · y1,n
y2,1 y2,2 · · · y2,n

...
...

...
...

yr,1 yr,2 · · · yr,n

(4)

For the case of a systematic MDS code, we have

x1,1 x1,2 · · · x1,n−m p1,1 · · · p1,m
x2,1 x2,2 · · · x2,n−m p2,1 · · · p2,m

...
...

...
...

...
...

...
xr,1 xr,2 · · · xr,n−m pr,1 · · · pr,m

(5)

Proposition 9. The symbol matrix resulting from Construction
1 has a total of rn symbols that are placed in r rows and n
columns. Now, consider that we have m erasures per row,
and an additional s erasures over the remaining symbols
(referred to as (m; s) erasure pattern). The remaining symbols
are sufficient to decode the data symbols u0, · · · , uK−1, from
which the erasures in (m; s) erasure pattern can be recovered
by re-encoding the data.

We first give the following examples before discussing the
proof of the proposition above.

Example 10. Consider construction of (m=1;s=1) PMDS over
an array of r = 2, n = 3 symbols. Here, one can readily
use the trivial parity (i.e., sum of codewords) at each row
as an underlying MDS array code. We obtain the codeword
(x1,1, x1,2, p1,1 = x1,1 + x1,2, x2,1, x2,2, p2,1 = x2,1 + x2,2).
That is, we have

x1 x2 x1 + x2
x3 x4 x3 + x4

(6)

At this point, this symbol matrix can have m=1 erasure in each
row and additional m = 1 erasure in the remaining symbols.
For instance, one may have

x1 ∗ ∗
∗ x4 x3 + x4

(7)

This resulting symbol array (x1, x4, x3 + x4) forms a set of
linearly independent evaluation points of the underlying lin-
earized polynomial for the [N=4,K=3,D=2] Gabidulin code.
By polynomial interpolation, one can then solve for the data
coefficients u0, u1, u2, re-encode this into codewords and
construct back the full symbol matrix.

Example 11. Consider construction of (m=2;s=3) PMDS over
an array of r = 3, n = 5 symbols. Here, we use [N = 9,K =
6, D = 4] Gabidulin code together with an [n = 5, k = 3, d =
3] MDS code. We obtain, e.g., the following symbols, for the
case of systematic MDS code.

x1,1 x1,2 x1,3 p1,1 p1,2
x2,1 x2,2 x2,3 p2,1 p2,2
x3,1 x3,2 x3,3 p3,1 p3,2

(8)

At this point, this symbol matrix can have m=2 erasures in
each row and additional s = 3 erasures in the remaining
symbols. For instance, one may have

x1,1 x1,2 x1,3 ∗ ∗
∗ ∗ ∗ p2,1 p2,2
∗ ∗ ∗ ∗ p3,2

(9)

This resulting symbol array (x1,1, x1,2, x1,3, p2,1, p2,2, p3,2)
forms a set of linearly independent evaluation points of the
underlying linearized polynomial for the [N=9,K=6,D=4]
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Gabidulin code. By polynomial interpolation, one can then
solve for the data coefficients u0, · · · , u5, re-encode this into
codewords and construct back the full symbol matrix.

Proof of Proposition 9. We first provide a lemma, which is a
summary of the observations given in [13] for the scenario
considered here. (In particular, we have scalar symbols here
as compared to the vector case considered in [13].)

Lemma 12. Consider the code given in Construction 1,
where the Gabidulin codeword x = [x1, · · · , xN ] =
[f(g1), · · · , f(gN )] in FNqM is partitioned into symbol vectors
xi,1:n−m = (xi,1, · · · , xi,n−m) for row i = 1, · · · , r, and each
is encoded into symbols yi,1:n through GMDS. Consider a set
S which is the union of li symbols from row i (symbols in
yi,1:n). Then, the symbols in S correspond to the evaluations

of the underlying linearized polynomial f(·) at
r∑
i=1

min{li, k}

linearly independent (over Fq) points from Fqm .

The proof of this lemma is provided in Appendix A. We
utilize this Lemma in the following.

Corollary 13. Consider the code given in Construction I
and an erasure pattern which leaves li number of remaining
symbols in row i in the symbol matrix. In such a scenario, if
r∑
i=1

min{li, k} ≥ K, then, the erasure pattern can be recov-

ered from the remaining symbols. In particular, the remaining

symbols result in
r∑
i=1

min{li, k} linearly independent evalu-

ation points for the underlying polynomial (see Lemma 12).
And, when this number is greater than or equal to K, the
data symbols u0, · · · , uK−1 can be decoded via polynomial
interpolation, from which the pre-erasure situation of the array
can be recovered by re-encoding the symbols.

For a given (m;s) erasure scenario over an array of (r, n)
symbols (r rows and n columns), we have m erasures in each
row and additional si erasures per row, resulting in a total of

rm+
r∑
i=1

si = rm+s erasures. In Construction 1, after erasing

m symbols from each row, we are left with n−m symbols in
r rows. Now, having si number of additional erasures in each
row will result in having li = n−m−si number of symbols at
row i. Therefore, as the underlying MDS code has a dimension
of k = n−m, the number of linearly independent evaluations

at hand is
r∑
i=1

min{li, k} =
r∑
i=1

li = r(n − m) −
r∑
i=1

si =

r(n−m)− s = K. Therefore, any (m;s) erasure pattern can
be recovered with Construction 1.

We note that the construction above allows for construction
of PMDS for any m and s, but with a field size of qr(n−m),
whereas the existing literature on PMDS codes only works
for limited range of m or s (with lower field sizes). In the
following, we relax the optimal rate requirement in PMDS
codes and provide constructions with lower field sizes.

IV. RATE SUBOPTIMAL PMDS CODES THROUGH
COMBINATORIAL DESIGNS

We first note that one can readily utilize product codes [23]
to obtain PMDS type erasure correction properties. We first
report the rate from such an approach and then detail our
constructions utilizing combinatorial designs.
Construction II. Assume we have a data matrix of size (r−
s)× (n−m).
• First, create m parities per row by using [n, n−m] MDS

code, which expands the matrix to (r − s)× n.
• Apply column-wise [r, r−s] MDS codes to the expanded

matrix in the first step to obtain r × n matrix.
Observe that this code construction tolerates any m erasures
per row plus any s while being sup-optimal in the rate since
R(II) = (r−s)(n−m)

rn .
We will now utilize two combinatorial block designs, pro-

jective planes of order-p and resolvable balanced incomplete
block design (RBIBD) in order to construct rate suboptimal
PMDS codes.

Definition 14. A (v, κ, λ)-balanced incomplete block design
(BIBD) has v points distributed into blocks of size κ such that
any pair of points are contained in λ blocks. For a (v, κ, λ)-
BIBD, every point occurs in t = λ(v−1)

κ−1 blocks and the design

has exactly r = λ(v2−v)
κ2−κ blocks. A (v = p2 + p + 1, κ =

p+1, λ = 1)-BIBD with p ≥ 2 is called a projective plane of
order p.

Definition 15. A resolvable balanced incomplete block design
(RBIBD) with parameters (v, r, t, κ, λ) is an arrangement of
v points into r blocks of size κ, where κ < v, such that each
point appears in t parallel classes, and every pair of points
appears in λ blocks. The five parameters must satisfy vt = rκ
and λ(v − 1) = t(κ− 1)

We first provide an example. Assume a data D = u of size
9 contains 3 sub-data (Di = [ui,1:3]) each of size 3, i.e.,

u = {u1,1, u1,2, u1,3, u2,1, u2,2, u2,3, u3,1, u3,2, u3,3} .

We encode each of these sub-data with [10, 3] MDS code and
represent the resulting elements with P1 = p1,1:10 for D1,
P2 = p2,1:10 for D2, and P3 = p3,1:10 for D3. We have

[
ui,1:3

]  1 1 . . . 1
αi,1 αi,2 . . . αi,10
α2
i,1 α2

i,2 . . . α2
i,10

 =
[
pi,1:10

]
. (10)

These elements are grouped in a specific way placed into
array as represented in Fig. 1 where each codeword symbol
contains two elements each coming from two of the different
sets P1,P2,P3. Thus, each row now can be taken as [5, 3]
MDS code. Here, we can think of the generator matrix G of
overall code C as consisting of 15 thick columns each of size
2 thin columns (corresponding to 2 different sub-data). Note
that, the code can tolerate erasure of any m = 2 symbols
per row plus any s = 3 symbols hence allowing recovery
from PMDS erasure pattern since the remaining 12 elements
(6 symbols) have at least 3 elements (3 thin columns) per sub-
data from which each of the sub-data can be recovered and so
is the original array.
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p1,1 p1,2 p1,3 p1,4 p1,5

p1,6 p1,7 p1,8 p1,9 p1,10

p2,1 p2,2 p2,3 p2,4 p2,5

p2,6 p2,7 p2,8 p2,9 p2,10

p3,1 p3,2 p3,3 p3,4 p3,5

p3,6 p3,7 p3,8 p3,9 p3,10

1

2

3

c1 c2 c3 c4

c15

c6 c7 c8 c9 c10

c11 c12 c13 c14

c5

Fig. 1. MDS codewords corresponding to each sub-data are placed as symbols
of the code according to the underlying projective plane. This code tolerates
any (m = 2; s = 3) PMDS erasure pattern.

The general construction using a projective plane of order
p is as follows.
Construction III. Assume we have a data D of size r(n −
m), and consider a projective plane of order p with PMDS
parameters satisfying (n−m)p = s and r = p2 + p+ 1.
• Partition D into r = p2+p+1 sub-data, where p = s

n−m .
• Encode each sub-data using [n(p+1), n−m] MDS code

and distribute the resulting n(p + 1) elements for each
sub-data evenly to p+1 different rows (according to the
underlying projective plane).

As a result of this construction, symbols in each row stores
elements from p + 1 distinct sub-data, hence a row can be
considered as an [n, n −m] MDS code since puncturing np
coordinates from [n(p+1), n−m] MDS code results in [n, n−
m] MDS code. We now show that erasure of any m symbols
per row plus any s symbols can be tolerated.

Proof. Consider the generator matrix G which has r sub-
block-matrix (corresponding to the rows), each having n
thick columns (corresponding to the symbols in each row).
Furthermore, each of these thick columns also have p + 1
thin columns. Erasure of any m nodes per row is same as
puncturing any m thick columns from each of the r sub-block-
matrix. In addition, any s erasures corresponds to puncturing
any additional s thick columns.

Puncturing any m thick columns from each of the r sub-
block-matrix has the same effect on each sub-data. However,
the additional s erasures may have different effect on different
sub-data depending on the erasure pattern. Since any two
blocks in the projective plane has only one common point,
any s ≥ 2 thick columns contains at least one common sub-
data. Considering the worst case of having all s punctured
thick columns containing at least one common sub-data, the
remaining thick columns contain at least n(p+1)−m(p+1)−s
thin columns for each of the sub-data. Since we have p = s

n−m
in the code construction, we have at least n(p+ 1)−m(p+
1)−p(n−m) = n−m thin columns for each of the sub-data.
Therefore, using these n − m thin columns, we can decode
each of the sub-data using the underlying MDS code from
which the original array can be reconstructed.

Although this construction requires lower field size, it is not
rate optimal. The original data is of size r(n−m) and storage
cost is rn(p+1) yielding rate as R(III) = n−m

n(p+1) and we have
R(III)

R∗ = p2+p+1
(p+1)(p2+1) . One observation is that with projective

plane construction, the system may tolerate even more than
any s additional erasures (since construction is designed to

tolerate the worst case of s). For example, using projective
plane of order p = 1 for (m = 2, r = 3, n = 5) we can
tolerate %100 of s ≤ 3, %64.29 of s = 4 and none of s ≥ 5
erasures.
Construction IV. Assume we have a data D and consider an
(v, κ, λ = 1)-RBIBD satisfying s = (n−m)(v−κ)

κ−1 and r =
v(v−1)
κ(κ−1) .
• Partition D into v sub-data.
• Encode each sub-data using [n(v−1)κ−1 , n −m] MDS code

and distribute the resulting n(v−1)
κ−1 elements for each sub-

data according to the underlying RBIBD.
A row in r×n array stores symbols from the same set of κ

sub-data and since each sub-data is repeated v−1
κ−1 times, each

row stores n symbols for each of the κ sub-data. In other
words, each row can be represented by a block of RBIBD.
PMDS codes need to tolerate any m erasures per row plus
any s erasures. Any m erasures per row results in erasure of
m(v−1)
κ−1 for each sub-data. Furthermore, assume the worst case

that is the additional s erasures also occur involving a common
sub-data, then at least n(v−1)κ−1 −

m(v−1)
κ−1 −s symbols remain for

each sub-data. Since s = (n−m)(v−κ)
κ−1 , we have at least n−m

symbols for each sub-data, which is enough to decode each
sub-data using the underlying MDS code and from which the
original data can be decoded. This code construction yields
rate suboptimal PMDS as R(IV ) = (n−m)(κ−1)

n(v−1) and we have
R(IV )

R∗ = (κ−1)v
v2−v−vκ+κ2 .
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APPENDIX

The proof of this observation follows from the linearized
property of the polynomial utilized in the Gabidulin code. (The
proof is given in Lemma 9 and 23 of [13] for the general case
of having vector symbols. See also [19]. We provide a sum-
mary here for the scalar case.) Consider row i which encodes
symbols xi,1:n−m into yi:1:n = xi,n−mGMDS. Here, represent-
ing the corresponding evaluation points with gi,j for row i, we
have, as k = n −m, xi,1:k = (f(gi,1), f(gi,2), · · · , f(gi,k)).
Now, denoting GMDS as k × n matrix with entries [Gh,j ]
for h = 1, · · · , k and j = 1, · · · , n, we have yi,j =
k∑
h=1

f(gi,h)Gh,j . At this point, due to the linearized property

of f(·), we have yi,j = f(
k∑
h=1

Gh,jgi,h). Denote this new

evaluation points as g̃i,j =
k∑
h=1

Gh,jgi,h. These evaluation

points given by g̃i,1:n span the space spanned by the set gi,1:k.
Now, consider a set Si ⊆ {1, · · · , n} of size li. Due to the full
rankness of the matrix GMDS, the set of points {g̃i,j , j ∈ Si}
span a min{li, k} dimensional space in the space spanned
by gi,1:k. Furthermore, as the points in different rows, say
gi,1:k and gĩ,1:k for i 6= ĩ, are independent, we have linear
independence of g̃i,1:n and g̃ĩ,1:n for any i 6= ĩ. Therefore,
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the symbols in S = ∪ri=1Si correspond to the evaluations

of the underlying linearized polynomial f(·) at
r∑
i=1

min{li, k}

linearly independent (over Fq) points from Fqm .

REFERENCES

[1] G. A. Gibson, Redundant disk arrays: Reliable, parallel secondary
storage. MIT press Cambridge, MA, 1992, vol. 368.

[2] M. Blaum, J. Hafner, and S. Hetzler, “Partial-MDS codes and their
application to RAID type of architectures,” IEEE Trans. Inf. Theory,
vol. 59, no. 7, pp. 4510–4519, July 2013.

[3] M. Blaum, J. S. Plank, M. Schwartz, and E. Yaakobi, “Construction
of partial MDS (PMDS) and Sector-Disk (SD) codes with two global
parity symbols,” CoRR, vol. abs/1401.4715, Aug. 2014.

[4] M. Blaum and J. S. Plank, “Construction of two SD codes,”
CoRR, vol. abs/1305.1221, May 2013. [Online]. Available:
http://arxiv.org/abs/1305.1221

[5] J. S. Plank and M. Blaum, “Sector-Disk (SD) erasure codes for mixed
failure modes in RAID systems,” Trans. Storage, vol. 10, no. 1, pp.
4:1–4:17, Jan. 2014.

[6] M. Blaum and S. Hetzler, “Generalized concatenated types of codes for
erasure correction,” CoRR, vol. abs/1406.6270, Jun. 2014.

[7] M. Blaum, J. S. Plank, M. Schwartz, and E. Yaakobi, “Partial mds
(pmds) and sector-disk (sd) codes that tolerate the erasure of two random
sectors,” in Proc. 2014 IEEE International Symposium on Information
Theory (ISIT 2014), Honolulu, HI, Jul. 2014.

[8] P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin, “Explicit maximally
recoverable codes with locality,” IEEE Trans. Inf. Theory, vol. 60, no. 9,
pp. 5245–5256, Sept 2014.

[9] J. Chen, K. W. Shum, Q. Yu, and C. W. Sung, “Sector-disk codes and
partial mds codes with up to three global parities,” in Proc. 2015 IEEE
International Symposium on Information Theory (ISIT 2015), Hong
Kong, Jun. 2015.

[10] M. Li and P. P. Lee, “STAIR codes: a general family of erasure codes
for tolerating device and sector failures in practical storage systems,”
in Proc. 12th USENIX Conference on File and Storage Technologies,
Santa Clara, CA, Feb. 2014.

[11] F. Oggier and A. Datta, “Self-repairing homomorphic codes for dis-
tributed storage systems,” in Proc. 2011 IEEE INFOCOM, Shanghai,
China, Apr. 2011.

[12] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp.
6925–6934, Nov. 2012.

[13] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,
“Optimal locally repairable and secure codes for distributed storage
systems,” IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 212–236, Jan.
2014.

[14] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug 2014.

[15] E. M. Gabidulin, “Theory of codes with maximum rank distance,”
Problemy Peredachi Informatsii, vol. 21, no. 1, pp. 3–16, 1985.

[16] R. M. Roth, “Maximum-rank array codes and their application to
crisscross error correction,” IEEE Trans. Inf. Theory, vol. 37, no. 2,
pp. 328–336, Mar 1991.

[17] P. Delsarte, “Bilinear forms over a finite field, with applications to coding
theory,” Journal of Combinatorial Theory, Series A, vol. 25, no. 3, pp.
226–241, 1978.

[18] F. J. MacWilliams and N. J. A. Sloane, The theory for error-correcting
codes. North-Holland, 1977.

[19] G. M. Kamath, N. Silberstein, N. Prakash, A. S. Rawat, V. Lalitha,
O. O. Koyluoglu, P. V. Kumar, and S. Vishwanath, “Explicit MBR all-
symbol locality codes,” in Proc. 2013 IEEE International Symposium
on Information Theory (ISIT 2013), Istanbul, Turkey, Jul. 2013.

[20] N. Silberstein, A. S. Rawat, and S. Vishwanath, “Error resilience in
distributed storage via rank-metric codes,” in Proc. 50th Annual Allerton
Conference on communication, control and computing, Monticello, IL,
Oct. 2012.

[21] ——, “Error-correcting regenerating and locally repairable codes via
rank-metric codes,” IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 5765–
5778, Nov 2015.

[22] O. Koyluoglu, A. Rawat, and S. Vishwanath, “Secure cooperative
regenerating dodes for distributed storage systems,” IEEE Trans. Inf.
Theory, vol. 60, no. 9, pp. 5228–5244, Sep. 2014.

[23] P. Elias, “Error-free coding,” Information Theory, Transactions of the
IRE Professional Group on, vol. 4, no. 4, pp. 29–37, Sep. 1954.

[24] D. R. Stinson, Combinatorial designs: construction and analysis.
Springer, 2004.


