

Designing a Usability Study Sample Size

.

- How many participants are enough?
 - No equation/rule that says if you have x data will/won't be valid
 - Based on goals of usability study and tolerance for a margin or error
- Usability Goal
 - Identify major design issues as part of an iterative process
 3 or 4 users can provide useful data
 - Won't identify all (or most) of the usability issues, but can find significant ones
 - Product close to release, find remaining usability issues
 - Need more participants

	ch error are	you willing t	to accept?				
 Last t confic 	time we talked dence level	d about chang	ging confide	nce interval t	o meet the desi	red	
 Table how t 	e illustrates the interval ch the interval ch As sample size	at given an 8 nanges with u increases, the	0% success ser size upper and low	rate with a 9 er bounds mov	5% confidence	level,	
	Number Successful	Number of Participants	Lower 95% Confidence	Upper 95% Confidence			
	Number Successful 4	Number of Participants 5	Lower 95% Confidence 36 %	Upper 95% Confidence 98 %			
	Number Successful 4 8	Number of Participants 5 10	Lower 95% Confidence 36 % 48 %	Upper 95% Confidence 98 % 95 %			
	Number Successful 4 8 16	Number of Participants 5 10 20	Lower 95% Confidence 36 % 48 % 58 %	Upper 95% Confidence 98 % 95 % 95 %		From Lectu	179.0
	Number Successful 4 8 16 24	Number of Participants 5 10 20 30	Lower 95% Confidence 36 % 48 % 58 % 62 %	Upper 95% Confidence 98 % 95 % 95 % 91 %		From Lectu	ire 9
	Number Successful 4 8 16 24 40	Number of Participants 5 10 20 30 50	Lower 95% Confidence 36 % 48 % 58 % 62 % 67 %	Upper 95% Confidence 98 % 95 % 95 % 91 % 89 %		From Lectur Fraction of Data	rre 9 # of Standar Deviations fro
	Number Successful 4 8 16 24 40 80	Number of Participants 5 10 20 30 50 50 100	Lower 95% Confidence 36 % 48 % 58 % 62 % 67 % 71 %	Upper 95% Confidence 98 % 95 % 95 % 91 % 89 % 86 %		From Lectu Fraction of Data	rre 9 # of Standar Deviations fro Mean

Designing a Usability Study Within-Subjects or Between-Subjects Study

Are you going to be comparing different data for each participant or data from each participant to other participants?

9

Designing a Usability Study Within-Subjects or Between-Subjects Study TRIAL 1 Within-subjects (repeated-measures) Comparing different data for each participant across several trials Commonly used when you want to evaluate how easily . participant can learn to use a product TRIAL 2 Benefits Small sample sizes . Participant being compared to self so difference in data isn't because of differences in participants Weakness "Carryover effects" - performance in one condition . TRIAL 3 impacts performance in another condition Example, practice may improve performance where . fatigue may decrease performance Need to counterbalance for this effect as you design the . study How many errors does User A have in Trial 1, 2, and 3? How quickly can user B complete a task in Trial 1, 2, and 3? 10

 Order in which participants perform tasks can impact results Performance increases over time Is Task 5 just easier than Task 1? Was there learning between Task 1 and Task 5? 	Participant P1 P2 P3 P4	First Task T1 T3 T2 T4	Second Task T2 T1 T4 T3	Third Task T3 T4 T1 T2	Fourtl Task T4 T2 T3 T1
 Counterbalancing Changing the order in which different tasks are performed Randomly shuffle tasks, or create different orders so everyone is different 					
 When not to counterbalance? Tasks are totally unrelated to each other, performing one task will not help with the next Natural order of tasks is present, changing order would not make sense 					

Types of Data			
 Severity rating exar Is the data purely 	nple ordinal or is it interval?		
○ Poor ○ Fair [○] Good	^O Excellent	Explicit labels on items makes data ordinal	
Poor 0 0 0 0 0	Excellent	Leaving interval labels off and using anchors (labels on the end) makes data more "interval-like"	
Poor 00000000	O Excellent	With 10 points along the scale, make it more obvious that the distances between data points along a scale are equal Interval data	
			18

 Choose U In 	sing right statistics is important sing wrong test, end up with incorrect validate your entire usability test	t conclusion
 Type C 	of data examined will dictate diffe ommonly used statistical tests based	erent test on data type provided below
Data Type	Common Metrics	Statistical Procedure
Data Type Nominal (categories)	Common Metrics Task success (binary), errors (binary), top-2-box scores	Statistical Procedure Frequencies, crosstabs, Chi-squared
Data Type Nominal (categories) Ordinal (ranks)	Common Metrics Task success (binary), errors (binary), top-2-box scores Severity ratings, rankings (designs)	Statistical Procedure Frequencies, crosstabs, Chi-squared Frequencies, crosstabs, chi-square, Wilcoxon rank sum tests, Spearman rank correlation
Data Type Nominal (categories) Ordinal (ranks) Interval	Common Metrics Task success (binary), errors (binary), top-2-box scores Severity ratings, rankings (designs) Likert scale data, SUS scores	Statistical Procedure Frequencies, crosstabs, Chi-squared Frequencies, crosstabs, chi-square, Wilcoxon rank sum tests, Spearman rank correlation All descriptive statistics, <i>t</i> -tests, ANOVAs, correlation, regression analysis

		D	E
Mea	asures of Central Tendency		-
•	Middle, or central part of data	Moon	35.0833333
		Standard Error	3 24611267
	Moon	Martan	3.24011201
-	INICALL	Mode	7
	 Average time for user to complete task 	Standard Deviation	11 2448641
	 Just over 35 seconds 	Sample Variance	126 446969
		Kurtosis	-1.32152596
	Median	Skewness	0.25144171
	 Midway paint in the distribution 	Range	3
	 Midway point in the distribution 	Minimum	2
	 Half of the users were faster than 33.5 seconds 	Maximum	5
	 Half of the users were slower than 33.5 seconds 	Sum	42
	 Usage – salaries, executive salaries skew mean so much 	Count	1
	that average salary appears higher than the majority really are	Confidence Level (95.0%)	7.1446458
	Mode		
	 Most commonly occurring value 		
	Two participants finished the task in 22 sec		
	Mana and dia addia at a sila addia a sala a		

	D	E
Confidence Intervals		
 Range that estimates the true population value for a 		
statistic	Mean	35.0833333
510115110	Standard Error	3.24611267
	Median	33
	Mode	2
	Standard Deviation	11.2448641
	Sample Variance	126.446969
	Kurtosis	-1.32152596
	Skewness	0.25144171
	Range	
	Minimum	1
	Maximum	5
	Sum	42
	Count	
	Confidence Level (95.0%)	7.14464581
	You want to be 95% certa mean for the entire popul Data shows that populati 35 ± 7 sec or 28 to 42 sec	in about the ation is on mean is onds

	• 1	ndepen	de	nt Samples			
		 Corr 	npa	ring means across diff	erent set of	participants	
		Ivomole		0			
		zxampie	5				
		 Con 	npa	re data for men and w	omen		
		 Corr 	npa	re satisfaction rates fo	r novice and	l expert user:	3
	• /	\nalvza		ing Excol		•	
	• /	Analyze	us	ing Excei			
		 Tool 	s >	"t-Test: Two Samples	Assumina I	Equal Varian	ce"
					0		
	A	В	С	D	E	F	
1	A Expert time	B Novice time	С	D 1-Test. Two-Sample Assuming Ex	E gual Variances	F	
1 2	A Expert time 34	B Novice time 45	С	D t-Test: Two-Sample Assuming Ed	E gual Variances	F	
1 2 3	A Expert time 34 33	B Novice time 45 48	С	D 1-Test. Two-Sample Assuming Er	E gual Variances Expertitime	F Novice time	Experts are faster (35 sec) compared to
1 2 3 4	A Expert time 34 33 28	B Novice time 45 48 53	С	D I-Test. Two-Sample Assuming Er Mean	E gual Variances Expert time 35.08333333	F Novice time 49 33333333	Experts are faster (35 sec) compared to novices (49 sec)
1 2 3 4 5	A Expert time 34 33 28 44	B Novice time 45 48 53 08	С	D t-Test Two-Sample Assuming Ec Mean Variance	E gual Variances Expert time 35.08333333 126.4469607	F 49.3333333 229.6069697	Experts are faster (35 sec) compared to novices (49 sec)
1 2 3 4 5 6	A Expert time 34 33 28 44 46	B Novice time 45 48 53 08 67	С	D I-Test: Two-Sample Assuming Ex Mean Department Variance Observations	E gual Variances Expert time 35 08333333 128.44699097 12	F 49 3333333 229 6966607 12	Experts are faster (35 sec) compared to novices (49 sec)
1 2 3 4 5 6 7	A Expertime 34 33 28 44 46 21	B Novice time 45 48 53 08 67 35	С	D t-Test. Two-Sample Assuming Ed Mean Variance Observations Pooled Variance	E gual Variances Expert time 35 08033333 126 4469697 12 178 0719697	F 49.3333333 229.6966607 12	Experts are faster (35 sec) compared to novices (49 sec)
1 2 3 4 5 6 7 8	A Expert time 34 33 28 44 46 21 22	B Novice time 45 48 53 08 67 35 39	С	D t-Test Two-Sample Assuming Eo Neean Variance Observations Pooled Variance Hypothesized Mean Difference	E guel Variances Expert time 35 0633333 126 4469607 12 178 0719697 0	F Novice time 49 33333333 229 6060607 12	Experts are faster (35 sec) compared to novices (49 sec)
1 2 3 4 5 6 7 8 9	A Expert time 34 33 28 44 46 21 22 53	B Novice time 45 48 53 08 67 35 39 21	С	D t-Test. Two-Sample Assuming Ev Mean Vanance Observations Pooled Variance Hypothesized Mean Difference of	E gual Variances Expertitme 126.4469607 12 178.0719697 0 22	F 49 3333333 229 6060607 12	Experts are faster (35 sec) compared to novices (49 sec)
1 2 3 4 5 6 7 8 9 10	A Expert time 34 33 28 44 46 21 22 53 53 22	B Novice time 45 48 53 68 67 35 39 21 34	С	D t-Test. Two-Sample Assuming Er Mean Difference Difference Observations Pooled Variance Hypothesized Mean Difference of t Stat	E 2xel Variances Expert time 35 0633333 126 4469607 128 0719997 0 22 -2 61572/876 -2 -2 61572/876	F Novice Drme 40 3333333 229 6069007 12	Experts are faster (35 sec) compared to novices (49 sec) p-value is the probability that random
1 2 3 4 5 6 7 8 9 10 11	A Expert time 34 33 28 44 46 21 22 53 22 29	B Novice time 45 48 53 66 67 35 39 21 34 55	С	D t-Test: Two-Sample Assuming Ec Mean Variance Observations Pooled Variance Hypothesized Mean Difference of t Stat P[T<=t] one tail	E 2xel Variances Expert time 126 4409097 128 4409097 128 4409097 128 0719097 0 22 2 615728766 0.007802032	F 49 3333333 229 6069607 12	Experts are faster (35 sec) compared to novices (49 sec) p-value is the probability that random sampling would lead to a difference
1 2 3 4 5 6 7 8 9 10 11 12	A Expert time 34 33 28 44 46 21 22 53 22 29 39 39	B Novice time 45 48 53 06 67 39 21 34 55 55	C	D I-Test: Two-Sample Assuming Ex- Mean: United States of the Sample Assuming Ex- Manance Observations Pooled Variance Hypothesized Mean Difference of I: Stat P(T=t) one-tail I: Critical one-tail	E 2041 Variances 25 0633333 128 4409097 12 178 0719097 0 22 2-2 615728766 0 00792032 1 777144335	F Novice time 49 3333333 229 6069697 12	Experts are faster (35 sec) compared to novices (49 sec) p-value is the probability that random sampling would lead to a difference between sample means as large (or larger
1 2 3 4 5 6 7 8 9 10 11 12 13	A Expert time 33 28 44 46 6 21 22 53 3 22 29 39 50	B Novice time 45 48 67 35 39 21 21 34 55 59 70	C	D t-Test: Two-Sample Assuming Ed Nean Variance Observations Pooled Variance Hypothesized Mean Difference of tStat P(T=t) one tail P(T=t) monetail	E 2xel Variances Expert time 35 0633333 126 4469607 12 178 0719997 0 22 -2 615728765 0 007692932 1 717144335 0 015765285	F Novice time 49.3333333 229.9009097 12	Experts are faster (35 sec) compared to novices (49 sec) p-value is the probability that random sampling would lead to a difference between sample means as large (or larger than you observed

Summary	
 Nominal data are categorical Nominal data are usually expressed as frequencies or percentages Chi-square test can be used when you want to learn whether the frequency distribution is random or there is some underlying significance to the distribution pattern 	
 Ordinal data are rank orders Ordinal data are also analyzed suing sequences, and the distribution patterns can be analyzed with a chi-square test 	
 Interval data are continuous data where the interval between each point are meaningful with without a natural zero Can be described by means, standard deviations, and confidence intervals Means can be compare to each other for the same set of users (paired samples t-test) or across different users (independent sample t-test) ANOVA can be used to compare more than two sets of data Relationships between variable can be examined through correlations. 	
 Ration data are the same as interval data but with a natural zero Same statistics that apply to interval data also apply to ratio data 	
	40