ECE 478/578: Fundamentals of Computer Networks

Homework Assignment \# 2

Due Thursday February 2nd, In class

January 26, 2012

Problems 2.4, 2.13, 2.18, from textbook.
Problem 4: Suppose that flag " 0101 " is used to indicate the end of a frame and the bit stuffing rule is to insert a 0 after each appearance of 010 in the original data; thus, 010101 would be modified to 01001001 . In addition, if the frame ends in 01 , a 0 would be stuffed after the first 0 in the actual terminating string. Show how the string 110011010010101011101 would be modified by this rule. Describe the de-stuffing rule required at the receiver. How would the string 11010001001001100101 be de-stuffed?

Problem 6: (Only for grad students) Assume that a packet consists of IID random binary bits with equal probability of 0 and 1. Assume that the terminating flag for framing this packet is of the type $01^{j} 0$ for some j ($j=6$ corresponds to the standard flag 01111110 we have seen in the class). An insertion of a zero occurs after any string of the form 01^{j-1} within the packet. Show that the expected overhead $E[V]$ (i.e., number of bits used for framing) is given by:

$$
E[V]=(E[K]-j+3) 2^{-j}+j+2
$$

where $E[K]$ is the expected length of the packet before framing. Approximate this overhead by

$$
E[V] \leq(E[K]) 2^{-j}+j+2
$$

and find the optimal value of j that minimizes $E[V]$ for a given expected packet length $E[K]$.

