
Generating	  Graphs	  –	  Tips	  
	  

	  
Plotting	  tips	  
	  

1. Label	  your	  axes	  and	  use	  appropriate	  units.	  
2. Make	  sure	  the	  scales	  on	  both	  axes	  are	  appropriate.	  If	  you	  are	  to	  use	  the	  same	  

variable	  on	  multiple	  plots	  (e.g.	  throughput)	  use	  the	  same	  scale	  on	  all	  plots	  so	  
they	  can	  be	  compared.	  

3. Do	  not	   superimpose	  more	   than	  4-‐5	  plot	   lines	  on	   the	   same	  plot;	   it	  becomes	  
too	  clumped	  and	  unreadable.	  	  

4. If	   more	   than	   one	   plot	   lines	   are	   present	   in	   the	   same	   plot	   make	   sure	   to	  
individually	  label	  each	  one.	  	  

5. For	   individual	   plot	   lines	   use	   different	   marker	   shapes	   so	   they	   can	   be	  
distinguishable.	  	  

6. Keep	  in	  mind	  that	  colors	  do	  not	  show	  on	  a	  black	  and	  white	  printout.	  So	  if	  you	  
color	   code	   your	   lines,	   use	   some	   other	   discernable	   labeling	   such	   as	   dashed	  
lines	  to	  differentiate	  between	  plot	  lines.	  	  

	  
Sample	  graphs	  (irrelevant	  to	  the	  project)	  
	  
-‐	  Linear	  scale	  
	  

	  
-‐	   Logarithmic	   Y	   scale	   (used	   when	   your	   Y	   values	   vary	   by	   several	   orders	   of	  
magnitude)	  
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Figure 6: (a) E[Z] as function of the jamming probability p, (b) E[D] as a function of jamming probability p.
(c) E[D] as a function of K when 2n = 10.
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Figure 7: (a) E[D] as a function of K when J = 1, for the AB mode of the worst case. The theoretical value is
computed based on (3). (b) E[D] as a function of p, for the AB mode. The average and worst case are shown.
(c) E[D] as a function of K and for various J. The asymptotic value is equal to !log2(2n)".

Proposition 5 allows us to estimate the expected broad-
cast delay for the AB mode. Let D1 denote the expected
delay until the first success, D2 the delay until (2n−2) nodes
receive message m and D3 the delay until the last node re-
ceives m. The expected broadcast delay is bounded by

E[D] = E[D1 +D2 +D3]

≤ K
K − 1

+ !log2(2n)"+
K

K − 1
. (3)

In (3), we have used the fact that it takes, on average, K
K−1

slots for the first successful relay when p = 1
K . Moreover, af-

ter the first success, !log2(2n)" slots are needed in the worst
case until 2n− 2 nodes receive m. The last node receives m
after K

K−1 slots, on average.
We also studied the performance of the AB mode via sim-

ulations. For our simulations, we generated sequences of
size 1, 000 hops for different values of n and K according to
Algorithm 2. We also randomly selected J channels to be
jammed per time-slot. All results were averaged over 100
runs. Figure 7(a) shows the value of E[D] as a function of
K for J = 1. We observe that the theoretical value derived
using Proposition 5 agrees with the value obtained via sim-
ulation. In figure 7(b), we show the average and worst-case
broadcast delay, as a function of the jamming probability p.
We observe that even when p is as high as 0.83, the average
and worst-case delays differ by less than six slots. This is
due to the “relay explosion” effect of the splitting algorithm.
The AB mode is significantly more resilient to jamming

than the SU mode, due to the larger number of nodes relay-
ing the broadcast message. Even when 83% of the frequency
bands are jammed, the AB mode requires only 38 slots to

complete a broadcast, compared to 228 slots needed with
the SU mode. In figure 7(c), we show E[D] as a function K
for different values of J . We observe that with the increase
of K, E[D] asymptotically approaches the performance of
the AB mode in the absence of jammers.

6.2.2 Resilience to Internal Jammers
Assume now that the adversary has compromised r nodes

and recovered their FH sequences. We are interested in de-
termining the broadcast delay until the remaining (2n−r−2)
legitimate nodes receive a broadcast message m from a legiti-
mate source. Knowledge of the r hopping sequences reduces
the adversary’s uncertainty with respect to the frequency
bands where unicast transmissions between legitimate nodes
take place. This is because at a given time slot, communica-
tions take place in orthogonal frequency bands. Thus know-
ing r FH sequences reduces the space of C for the selection of
the uncompromised FH sequences. The exact value of E[D]
depends on the selection of the 1-factorization that is used
to construct the hopping sequences and the specific arrange-
ment of the compromised nodes on that 1-factorization. The
jamming probability p varies on a slot-by-slot basis and is
given in the following proposition.

Proposition 6. Under the compromise of r nodes, the
jamming probability p is bounded by

min{1, J
K − ! r

2"
} ≤ p ≤ min{1, J

K − r
}. (4)

Proof. The proof is provided in Appendix E.

We further used simulation to investigate the impact of
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F.	  Matlab	  code	  for	  generating	  graphs	  
	  
close	  all;	  %	  closes	  all	  open	  figure	  windows	  
	  
set(0,'defaulttextinterpreter','latex');	  %	  allows	  you	  to	  use	  latex	  math	  	  
set(0,'defaultlinelinewidth',2);	  %	  line	  width	  is	  set	  to	  2	  
set(0,'DefaultLineMarkerSize',10);	  %	  marker	  size	  is	  set	  to	  10	  
set(0,'DefaultTextFontSize',	  16);	  %	  Font	  size	  is	  set	  to	  16	  
set(0,'DefaultAxesFontSize',16);	  %	  font	  size	  for	  the	  axes	  is	  set	  to	  16	  
	  
figure(1)	  
plot(X,	  Y1,	  '-‐bo',	  X,	  Y2,	  '-‐-‐rs',	  X,	  Y3,	  '-‐.k^');	  %	  plotting	  three	  curves	  Y1,	  Y2,	  Y3	  for	  the	  
same	  X	  
grid	  on;	  %	  grid	  lines	  on	  the	  plot	  
legend('$p=0.2$',	  '$p=0.25$','$p=0.5,$);	  
ylabel('$T$	  (Kbps)');	  
xlabel('$\lambda$'	  (p/sec));	  	  
title('Hidden	  Terminal	  Scenario');	  
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Figure 8: (a) Communication overhead as a function of path length for an audit size of 200 packets. The
overhead is computed for the time required by the REAct scheme to converge on the misbehaving node. (b)
Communication overhead as a function of audit size for a path length of eight nodes. (c) Identification delay
as a function of the path length in units of audit size.

the audit period.
For all three schemes, the communication overhead in-

creases almost linearly with the path length. For the CON-
FIDANT and 2ACK schemes, this linear increase is justified
by the proportional increase of the number of transmissions
that need to be monitored or acknowledged, in order to de-
tect misbehavior. For the REAct scheme, the linear be-
havior is justified by the proportional increase of the path
lengths from each audited node to the source. Note that
the number of audits required by REAct for misbehavior
identification increases logarithmically with the path length.
Hence, the increase in number of audits has small impact on
the overall increase of communication overhead.

5.2.2 Impact of audit size
The audit size parameter defines the minimum number of

packets that need to be monitored, in order to di�erentiate a
normal dropping rate from misbehavior. For example, when
the audit size is equal to 200 packets, a node’s behavior must
be monitored for at least 200 packets to decide whether its
dropping rate is normal or constitutes misbehavior. In Fig-
ure 8(b), we show the communication overhead as a function
of the audit size, for a fixed path length of eight nodes. Both
proactive schemes incur a linear increase in communication
overhead with the audit size. This is due to the fact that
for the monitoring and acknowledgment-based methods, the
communication overhead incurs on a per-packet basis. On
the other hand, the overhead for REAct is related to the
number of audits required and not the duration of each au-
dit. Hence, the overhead of REAct is independent of the
audit size.

5.3 Identification Delay
While REAct provides significant savings in communica-

tion overhead, it requires a longer time to identify the misbe-
having node, since multiple audits need to be performed. On
the other hand, the proactive schemes require only the dura-
tion of one audit to identify misbehavior. This is due to the
fact that proactive protocols monitor all nodes in the path
PSD in parallel. Fortunately, the number of audits required
by REAct grows logarithmically with the path length due
to the random binary search algorithm employed. Hence,
the increase in identification delay for REAct is fairly small,

compared to the savings in communication overhead.
In Figure 8(c), we show the identification delay for REAct,

CONFIDANT, and 2ACK as a function of the length of the
path |PSD|, in units of audits. We observe the logarithmic
increase of the identification delay with the path length. On
the other hand, CONFIDANT requires only the duration of
a single audit to identify the misbehaving node. The 2ACK
scheme also requires a single audit when all packets are ac-
knowledged two hops upstream. However, the identification
delay increases when only a fraction of the packets in one
audit are acknowledged. For example, the 0.1 2ACK scheme
acknowledges only 10% of the packets in one audit, thus re-
ducing the communication overhead to a value comparable
with REAct. However, as shown in Figure 8(c), it requires
a duration of 10 audits to provide su⇤cient evidence for the
identification of misbehavior.

5.4 Comparison Based on Identification
Delay

According to Figure 8(c), the three compared schemes in-
cur di�erent delay in the misbehavior identification. We
now evaluate the communication overhead incurred by each
scheme, from the start of the node misbehavior until the
identification of the compromised node. The communica-
tion overhead of CONFIDANT and 2ACK is measured for
the duration of a single audit, while the overhead of REAct
is measured for the logarithmic number of audits required
to identify the compromised node.

In Figure 9(a), we show the communication overhead as
a function of the path length, for an audit size of 200 pack-
ets. In Figure 9(b), we show the communication overhead
as a function of the audit size for a path length of 8 nodes.
We observe that even in the case where the communication
overhead is measured only during the identification time,
REAct significantly outperforms the two proactive schemes.
Both the CONFIDANT and 2ACK schemes are sensitive to
path length and audit size, leading to very high energy and
bandwidth expenditure for misbehavior detection. On the
other hand, REAct allows for a graceful tradeo� between
communication overhead and delay in the identification of
misbehavior.


