
Generating	 Graphs	 –	 Tips	
	

	
Plotting	 tips	
	

1. Label	 your	 axes	 and	 use	 appropriate	 units.	
2. Make	 sure	 the	 scales	 on	 both	 axes	 are	 appropriate.	 If	 you	 are	 to	 use	 the	 same	

variable	 on	 multiple	 plots	 (e.g.	 throughput)	 use	 the	 same	 scale	 on	 all	 plots	 so	
they	 can	 be	 compared.	

3. Do	 not	 superimpose	 more	 than	 4-‐5	 plot	 lines	 on	 the	 same	 plot;	 it	 becomes	
too	 clumped	 and	 unreadable.	 	

4. If	 more	 than	 one	 plot	 lines	 are	 present	 in	 the	 same	 plot	 make	 sure	 to	
individually	 label	 each	 one.	 	

5. For	 individual	 plot	 lines	 use	 different	 marker	 shapes	 so	 they	 can	 be	
distinguishable.	 	

6. Keep	 in	 mind	 that	 colors	 do	 not	 show	 on	 a	 black	 and	 white	 printout.	 So	 if	 you	
color	 code	 your	 lines,	 use	 some	 other	 discernable	 labeling	 such	 as	 dashed	
lines	 to	 differentiate	 between	 plot	 lines.	 	

	
Sample	 graphs	 (irrelevant	 to	 the	 project)	
	
-‐	 Linear	 scale	
	

	
-‐	 Logarithmic	 Y	 scale	 (used	 when	 your	 Y	 values	 vary	 by	 several	 orders	 of	
magnitude)	

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

Jamming probability (p)

E
[Z

]

2n=8 (theoretical)
2n=8 (simulation)
2n=32 (theoretical)
2n=32 (simulation)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

Jamming probability (p)

E
[D

]
(s

lo
ts

)

2n=8 (simulation)
2n=8 (theoretical)
2n=10 (simulation)
2n=10 (theoretical)
2n=16 (simulation)
2n=16 (theoretical)

5 10 15 20 25
0

10

20

30

40

50

K

E
[D

]
(s

lo
ts

)

J=1
J=2
J=3
Asymptotic value

(a) (b) (c)

Figure 6: (a) E[Z] as function of the jamming probability p, (b) E[D] as a function of jamming probability p.
(c) E[D] as a function of K when 2n = 10.

8 12 16 20 24 28
0

1

2

3

4

5

6

7

8

K

E
[D

]
(s

lo
ts

)

2n=8 (simulation)

2n=8 (theoretical)

2n=16 (simulation)

2n=16 (theoretical)

0 0.17 0.33 0.50 0.67 0.83
0

10

20

30

40

Jamming probability (p)

E
[D

]
(s

lo
ts

)

Average
Worst case

2n=16
K=12

5 10 15 20 25
0

2

4

6

8

10

12

K

E
[D

]
(s

lo
ts

)

J=1
J=2
J=3
Asymptotic value

(a) (b) (c)

Figure 7: (a) E[D] as a function of K when J = 1, for the AB mode of the worst case. The theoretical value is
computed based on (3). (b) E[D] as a function of p, for the AB mode. The average and worst case are shown.
(c) E[D] as a function of K and for various J. The asymptotic value is equal to !log2(2n)".

Proposition 5 allows us to estimate the expected broad-
cast delay for the AB mode. Let D1 denote the expected
delay until the first success, D2 the delay until (2n−2) nodes
receive message m and D3 the delay until the last node re-
ceives m. The expected broadcast delay is bounded by

E[D] = E[D1 +D2 +D3]

≤ K
K − 1

+ !log2(2n)"+
K

K − 1
. (3)

In (3), we have used the fact that it takes, on average, K
K−1

slots for the first successful relay when p = 1
K . Moreover, af-

ter the first success, !log2(2n)" slots are needed in the worst
case until 2n− 2 nodes receive m. The last node receives m
after K

K−1 slots, on average.
We also studied the performance of the AB mode via sim-

ulations. For our simulations, we generated sequences of
size 1, 000 hops for different values of n and K according to
Algorithm 2. We also randomly selected J channels to be
jammed per time-slot. All results were averaged over 100
runs. Figure 7(a) shows the value of E[D] as a function of
K for J = 1. We observe that the theoretical value derived
using Proposition 5 agrees with the value obtained via sim-
ulation. In figure 7(b), we show the average and worst-case
broadcast delay, as a function of the jamming probability p.
We observe that even when p is as high as 0.83, the average
and worst-case delays differ by less than six slots. This is
due to the “relay explosion” effect of the splitting algorithm.
The AB mode is significantly more resilient to jamming

than the SU mode, due to the larger number of nodes relay-
ing the broadcast message. Even when 83% of the frequency
bands are jammed, the AB mode requires only 38 slots to

complete a broadcast, compared to 228 slots needed with
the SU mode. In figure 7(c), we show E[D] as a function K
for different values of J . We observe that with the increase
of K, E[D] asymptotically approaches the performance of
the AB mode in the absence of jammers.

6.2.2 Resilience to Internal Jammers
Assume now that the adversary has compromised r nodes

and recovered their FH sequences. We are interested in de-
termining the broadcast delay until the remaining (2n−r−2)
legitimate nodes receive a broadcast message m from a legiti-
mate source. Knowledge of the r hopping sequences reduces
the adversary’s uncertainty with respect to the frequency
bands where unicast transmissions between legitimate nodes
take place. This is because at a given time slot, communica-
tions take place in orthogonal frequency bands. Thus know-
ing r FH sequences reduces the space of C for the selection of
the uncompromised FH sequences. The exact value of E[D]
depends on the selection of the 1-factorization that is used
to construct the hopping sequences and the specific arrange-
ment of the compromised nodes on that 1-factorization. The
jamming probability p varies on a slot-by-slot basis and is
given in the following proposition.

Proposition 6. Under the compromise of r nodes, the
jamming probability p is bounded by

min{1, J
K − ! r

2"
} ≤ p ≤ min{1, J

K − r
}. (4)

Proof. The proof is provided in Appendix E.

We further used simulation to investigate the impact of

8

	

	
	
F.	 Matlab	 code	 for	 generating	 graphs	
	
close	 all;	 %	 closes	 all	 open	 figure	 windows	
	
set(0,'defaulttextinterpreter','latex');	 %	 allows	 you	 to	 use	 latex	 math	 	
set(0,'defaultlinelinewidth',2);	 %	 line	 width	 is	 set	 to	 2	
set(0,'DefaultLineMarkerSize',10);	 %	 marker	 size	 is	 set	 to	 10	
set(0,'DefaultTextFontSize',	 16);	 %	 Font	 size	 is	 set	 to	 16	
set(0,'DefaultAxesFontSize',16);	 %	 font	 size	 for	 the	 axes	 is	 set	 to	 16	
	
figure(1)	
plot(X,	 Y1,	 '-‐bo',	 X,	 Y2,	 '-‐-‐rs',	 X,	 Y3,	 '-‐.k^');	 %	 plotting	 three	 curves	 Y1,	 Y2,	 Y3	 for	 the	
same	 X	
grid	 on;	 %	 grid	 lines	 on	 the	 plot	
legend('$p=0.2$',	 '$p=0.25$','$p=0.5,$);	
ylabel('T	 (Kbps)');	
xlabel('λ'	 (p/sec));	 	
title('Hidden	 Terminal	 Scenario');	
	
	

2 4 6 8 10 12 14100

101

102

103

104

105

Path Length, | PSD |

Co
m

m
un

ica
tio

n
O

ve
rh

ea
d

Communication overhead as a function of | PSD |

2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
REAct

200 400 600 800 1000100

101

102

103

104

105

Audit Size, acount

Co
m

m
un

ica
tio

n
O

ve
rh

ea
d

Communication overhead as a function of acount

2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
REAct

2 4 6 8 10 120

2

4

6

8

10

Path Length, | PSD |

Au
di

ts
 (a

co
un

t =
 2

00
)

Misbehavior identification delay

2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
REAct

(a) (b) (c)

Figure 8: (a) Communication overhead as a function of path length for an audit size of 200 packets. The
overhead is computed for the time required by the REAct scheme to converge on the misbehaving node. (b)
Communication overhead as a function of audit size for a path length of eight nodes. (c) Identification delay
as a function of the path length in units of audit size.

the audit period.
For all three schemes, the communication overhead in-

creases almost linearly with the path length. For the CON-
FIDANT and 2ACK schemes, this linear increase is justified
by the proportional increase of the number of transmissions
that need to be monitored or acknowledged, in order to de-
tect misbehavior. For the REAct scheme, the linear be-
havior is justified by the proportional increase of the path
lengths from each audited node to the source. Note that
the number of audits required by REAct for misbehavior
identification increases logarithmically with the path length.
Hence, the increase in number of audits has small impact on
the overall increase of communication overhead.

5.2.2 Impact of audit size
The audit size parameter defines the minimum number of

packets that need to be monitored, in order to di�erentiate a
normal dropping rate from misbehavior. For example, when
the audit size is equal to 200 packets, a node’s behavior must
be monitored for at least 200 packets to decide whether its
dropping rate is normal or constitutes misbehavior. In Fig-
ure 8(b), we show the communication overhead as a function
of the audit size, for a fixed path length of eight nodes. Both
proactive schemes incur a linear increase in communication
overhead with the audit size. This is due to the fact that
for the monitoring and acknowledgment-based methods, the
communication overhead incurs on a per-packet basis. On
the other hand, the overhead for REAct is related to the
number of audits required and not the duration of each au-
dit. Hence, the overhead of REAct is independent of the
audit size.

5.3 Identification Delay
While REAct provides significant savings in communica-

tion overhead, it requires a longer time to identify the misbe-
having node, since multiple audits need to be performed. On
the other hand, the proactive schemes require only the dura-
tion of one audit to identify misbehavior. This is due to the
fact that proactive protocols monitor all nodes in the path
PSD in parallel. Fortunately, the number of audits required
by REAct grows logarithmically with the path length due
to the random binary search algorithm employed. Hence,
the increase in identification delay for REAct is fairly small,

compared to the savings in communication overhead.
In Figure 8(c), we show the identification delay for REAct,

CONFIDANT, and 2ACK as a function of the length of the
path |PSD|, in units of audits. We observe the logarithmic
increase of the identification delay with the path length. On
the other hand, CONFIDANT requires only the duration of
a single audit to identify the misbehaving node. The 2ACK
scheme also requires a single audit when all packets are ac-
knowledged two hops upstream. However, the identification
delay increases when only a fraction of the packets in one
audit are acknowledged. For example, the 0.1 2ACK scheme
acknowledges only 10% of the packets in one audit, thus re-
ducing the communication overhead to a value comparable
with REAct. However, as shown in Figure 8(c), it requires
a duration of 10 audits to provide su⇤cient evidence for the
identification of misbehavior.

5.4 Comparison Based on Identification
Delay

According to Figure 8(c), the three compared schemes in-
cur di�erent delay in the misbehavior identification. We
now evaluate the communication overhead incurred by each
scheme, from the start of the node misbehavior until the
identification of the compromised node. The communica-
tion overhead of CONFIDANT and 2ACK is measured for
the duration of a single audit, while the overhead of REAct
is measured for the logarithmic number of audits required
to identify the compromised node.

In Figure 9(a), we show the communication overhead as
a function of the path length, for an audit size of 200 pack-
ets. In Figure 9(b), we show the communication overhead
as a function of the audit size for a path length of 8 nodes.
We observe that even in the case where the communication
overhead is measured only during the identification time,
REAct significantly outperforms the two proactive schemes.
Both the CONFIDANT and 2ACK schemes are sensitive to
path length and audit size, leading to very high energy and
bandwidth expenditure for misbehavior detection. On the
other hand, REAct allows for a graceful tradeo� between
communication overhead and delay in the identification of
misbehavior.

