ECE 566

Bayesian Inference I

Combining Predictive and Diagnostic Supports:

$\mathrm{O}(\mathrm{H} \mid \mathrm{e})=\mathrm{L}(\mathrm{e} \mid \mathrm{H}) \mathrm{O}(\mathrm{H})$

This formula allows us to update our belief about H once we have observed evidence e.

Ex:

You are awakened one night by the sound of your house alarm. Every night one in ten thousand homes gets burglarized. There is a 95% chance that a burglary attempt triggers the alarm, there is a 1% chance that the alarm triggers by other reasons such as malfunction. What is the probability that your house is being burglarized?

$$
\begin{aligned}
& \mathrm{P}(\text { Alarm } \mid \text { Burglary })=0.95 \\
& \mathrm{P}(\text { Alarm } \mid \neg \text { Burglary })=0.01 \\
& \mathrm{P}(\text { Burglary })=10^{-4}
\end{aligned}
$$

$\mathrm{O}($ Burglary \mid Alarm $)=\mathrm{L}($ Alarm \mid Burglary $) . \mathrm{O}$ (Burglary)
$\mathrm{L}($ Alarm \mid Burglary $)=\frac{\mathrm{P} \text { (Alarm } \mid \text { Burgalry })}{\mathrm{P}(\text { Alarm } \mid \neg \text { Burglary })}$
$\mathrm{L}($ Alarm \mid Burglary $)=\frac{0.95}{0.01}$
$\mathrm{O}($ Burglary $)=\frac{\mathrm{P}(\text { Burglary })}{\mathrm{P}(\neg \text { Burglary })}=\frac{10^{-4}}{1-10^{-4}}$
$\mathrm{O}($ Burglary \mid Alarm $)=0.0095$
$\mathrm{P}($ Burglary \mid Alarm $)=\frac{0.0095}{1+0.0095}=0.00941$

Pooling of Evidences

Assume that the alarm systems consists of n devices, and each produces a different sign.

Let e^{k} stand for evidence k ($\mathrm{k}^{\text {th }}$ detector):
e_{1}^{k} evidence k confirms the hypothesis
e_{0}^{k} evidence k disconfirms

$$
\mathrm{L}\left(\mathrm{e}_{1}^{\mathrm{k}} \mid \mathrm{H}\right)=\frac{\mathrm{P}\left(\mathrm{e}_{1}^{\mathrm{k}} \mid \mathrm{H}\right)}{\mathrm{P}\left(\mathrm{e}_{1}^{\mathrm{k}} \mid \neg \mathrm{H}\right)}
$$

The combined belief is obtained from:

$$
\begin{aligned}
O\left(H \mid e^{1}, e^{2}\right. & \left., \ldots, e^{n}\right)=L\left(e^{1}, e^{2}, \ldots, e^{n} \mid H\right) O(H) \\
& =L\left(e^{1} \mid H\right) \cdot L\left(e^{2} \mid H\right) \ldots L\left(e^{n} \mid H\right) O(H) \\
& =O(H) \prod_{k=1}^{n} L\left(e^{k} \mid H\right)
\end{aligned}
$$

assuming that the n devices operate independent of each other.

Recursive Bayesian Updating

Suppose we have observed n evidences $\overrightarrow{\mathrm{e}}^{\mathrm{n}}=\mathrm{e}^{1}, \mathrm{e}^{2}, \ldots, \mathrm{e}^{\mathrm{n}}$ regarding a hypothesis H .

Now, a new evidence e' becomes available. It needs to be incorporated into the previous results.
Since evidences are assumed to be independent:

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{e}^{\prime} \mid \overrightarrow{\mathrm{e}}^{\mathrm{n}}, \mathrm{H}\right)=\mathrm{P}\left(\mathrm{e}^{\prime} \mid \mathrm{H}\right) \\
& \mathrm{P}\left(\mathrm{e}^{\prime} \mid \overrightarrow{\mathrm{e}}^{\mathrm{n}}, \neg \mathrm{H}\right)=\mathrm{P}\left(\mathrm{e}^{\prime} \mid \neg \mathrm{H}\right)
\end{aligned}
$$

Thus:

$$
\mathrm{O}\left(\mathrm{H} \mid \overrightarrow{\mathrm{e}}^{\mathrm{n}}, \mathrm{e}^{\prime}\right)=\mathrm{O}\left(\mathrm{H} \mid \overrightarrow{\mathrm{e}}^{\mathrm{n}}\right) \mathrm{L}\left(\mathrm{e}^{\prime} \mid \mathrm{H}\right)
$$

So to update the belief, multiply the current posterior odds by the likelihood ration of e^{\prime}.

If we take the log of the above formula, we get an incremental updating process.

$$
\log \mathrm{O}\left(\mathrm{H} \mid \overrightarrow{\mathrm{e}}^{\mathrm{n}}, \mathrm{e}^{\prime}\right)=\log \mathrm{O}\left(\mathrm{H} \mid \overrightarrow{\mathrm{e}}^{\mathrm{n}}\right)+\log \mathrm{L}\left(\mathrm{e}^{\prime} \mid \mathrm{H}\right)
$$

This is the weight carried by evidence e'. Evidence supporting the hypothesis carries a positive weight and that opposing it carries a negative weight.

If we later find that one of the evidences was erroneous, we can rectify the error using:

$$
\begin{aligned}
& \Delta=\log \mathrm{L}\left(\mathrm{e}^{\mathrm{c}} \mid \mathrm{H}\right)-\log \mathrm{L}\left(\mathrm{e}^{\mathrm{w}} \mid \mathrm{H}\right) \\
& \text { where } \mathrm{e}^{\mathrm{c}}=\mathrm{e}^{\text {correct }} \\
& \quad \mathrm{e}^{\mathrm{w}}=\mathrm{e}^{\text {wrong }}
\end{aligned}
$$

Multi-Valued Hypotheses

The outcome of a hypothesis could be one of several states.

For example, burglary could be break-in through the door, or break-in through the window. Similarly evidence may have several modes.

- Refine the hypothesis space, and group the hypotheses into multi-valued variables. Represent conditional probabilities relating the hypothesis outcomes and evidences with a matrix.

Ex:

Using burglary, assign H_{1}, H_{2}, H_{3} and H_{4} as follows:

$$
\begin{aligned}
& \mathrm{H}_{1}=\text { No burglary, animal entry. } \\
& \mathrm{H}_{2}=\text { Attempted burglary, window break-in. } \\
& \mathrm{H}_{3}=\text { Attempted burglary, door break-in. } \\
& \mathrm{H}_{4}=\text { No burglary, no entry. }
\end{aligned}
$$

Each evidence, e^{k} has the following possible values:
$e_{1}^{k}=$ no sound
$\mathrm{e}_{2}^{\mathrm{k}}$ = low sound
$e_{3}^{k}=$ high sound

Represent the conditional probabilities by a matrix:
$\mathrm{P}\left(\mathrm{e}_{\mathrm{j}}^{\mathrm{k}} \mid \mathrm{H}_{\mathrm{i}}\right)=$ element i, j in the matrix represents the conditional probability between the $j^{\text {th }}$ value of evidence k and hypothesis H_{i}.

$$
\mathrm{P}\left(\mathrm{e}_{\mathrm{j}}^{\mathrm{k}} \mid \mathrm{H}_{\mathrm{i}}\right)=\begin{gathered}
\mathrm{e}_{1}^{\mathrm{k}} \\
\mathrm{H}_{1} \mathrm{e}_{2}^{\mathrm{k}} \\
\mathrm{H}_{2} \\
\mathrm{H}_{3} \\
\mathrm{H}_{3}^{\mathrm{k}} \\
\mathrm{H}_{4}
\end{gathered}\left[\begin{array}{ccc}
0.5 & 0.4 & 0.1 \\
0.06 & 0.5 & 0.44 \\
0.5 & 0.1 & 0.4 \\
1 & 0 & 0
\end{array}\right]
$$

To compute total belief from a set of n evidences, do the following:

Let

$$
\vec{\lambda}_{i}^{k}=\left[\mathrm{P}\left(\mathrm{e}_{\mathrm{i}}^{\mathrm{k}} \mid \mathrm{H}_{1}\right) \mathrm{P}\left(\mathrm{e}_{\mathrm{i}}^{\mathrm{k}} \mid \mathrm{H}_{2}\right) \ldots \mathrm{P}\left(\mathrm{e}_{\mathrm{i}}^{\mathrm{k}} \mid \mathrm{H}_{\mathrm{m}}\right)\right]
$$

$$
\Lambda_{i}=\prod \vec{\lambda}_{\mathrm{i}}^{\mathrm{k}} \longleftarrow \begin{aligned}
& \text { This is not traditional vector product, it is } \\
& \text { the product of vectors term by term. }
\end{aligned}
$$

then:

$$
\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{e}^{1}, \mathrm{e}^{2}, \ldots, \mathrm{e}^{\mathrm{n}}\right)=\alpha \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) \Lambda_{\mathrm{i}}
$$

α is a normalizing factor which will be set to ensure the posterior probabilities for H_{i} sum up to 1 .

Ex: In our last burglary example, assume we have two alarms each with properties given by the previous matrix. Let's assume the prior probabilities are :

$$
\overrightarrow{\mathrm{P}}\left(\mathrm{H}_{\mathrm{i}}\right)=\left[\begin{array}{l}
0.099 \\
0.009 \\
0.001 \\
0.891
\end{array}\right]
$$

We hear our first detector issuing a high sound. The second detector in our system is silent.

$$
\begin{aligned}
& \mathrm{e}^{1}=\text { high sound } \\
& \mathrm{e}^{2}=\text { silent }
\end{aligned}
$$

$$
\begin{gathered}
\vec{\lambda}_{3}^{1}=\left[\begin{array}{l}
\mathrm{P}\left(\mathrm{e}_{3}^{1} \mid \mathrm{H}_{1}\right) \\
\mathrm{P}\left(\mathrm{e}_{3}^{1} \mid \mathrm{H}_{2}\right) \\
\mathrm{P}\left(\mathrm{e}_{3}^{1} \mid \mathrm{H}_{3}\right) \\
\mathrm{P}\left(\mathrm{e}_{3}^{1} \mid \mathrm{H}_{4}\right)
\end{array}\right]=\left[\begin{array}{c}
0.1 \\
0.44 \\
0.4 \\
0
\end{array}\right] \\
\vec{\lambda}_{1}^{2}=\left[\begin{array}{l}
\mathrm{P}\left(\mathrm{e}_{1}^{2} \mid \mathrm{H}_{1}\right) \\
\mathrm{P}\left(\mathrm{e}_{1}^{2} \mid \mathrm{H}_{2}\right) \\
\mathrm{P}\left(\mathrm{e}_{1}^{2} \mid \mathrm{H}_{3}\right) \\
\mathrm{P}\left(\mathrm{e}_{1}^{2} \mid \mathrm{H}_{4}\right)
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0.06 \\
0.5 \\
1
\end{array}\right] \\
=\left[\begin{array}{c}
0.1 \\
0.44 \\
0.4 \\
0
\end{array}\right]\left[\begin{array}{c}
0.5 \\
0.06 \\
0.5 \\
1
\end{array}\right]=\left[\begin{array}{c}
0.05 \\
0.0264 \\
0.2 \\
0
\end{array}\right] \\
\left.\begin{array}{l}
\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{e}^{1}, \mathrm{e}^{2}\right)=\alpha \\
\vec{\lambda}^{1} \overrightarrow{\mathrm{P}}^{2}\left(\mathrm{H}_{\mathrm{i}}\right) \\
0.099 \\
0.009 \\
0.001 \\
0.891
\end{array}\right]\left[\begin{array}{c}
0.05 \\
0.0264 \\
0.2 \\
0
\end{array}\right] \\
=\alpha .10^{-3}\left[\begin{array}{c}
0.95 \\
0.238 \\
0.2 \\
0
\end{array}\right]=\left[\begin{array}{c}
0.919 \\
0.0439 \\
0.0375 \\
0
\end{array}\right]
\end{gathered}
$$

Arrival of information at different times

We can update belief incrementally by using earlier posterior probabilities as priors for later arriving information. Let's say that we first observe a high sound from our $1^{\text {st }}$ device.

$$
\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{e}^{1}\right)=\alpha \vec{\lambda}^{1} \overrightarrow{\mathrm{P}}\left(\mathrm{H}_{\mathrm{i}}\right)=\alpha\left[\begin{array}{c}
0.0099 \\
0.00396 \\
0.0004 \\
0
\end{array}\right]=\left[\begin{array}{c}
0.694 \\
0.277 \\
0.028 \\
0
\end{array}\right]
$$

Later we obtain information from our $2^{\text {nd }}$ device:

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{e}^{1}, \mathrm{e}^{2}\right) & =\alpha^{\prime} \vec{\lambda}^{2} \overrightarrow{\mathrm{P}}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{e}^{1}\right) \\
& =\alpha^{\prime}\left[\begin{array}{c}
0.347 \\
0.0166 \\
0.014 \\
0
\end{array}\right]=\left[\begin{array}{c}
0.919 \\
0.0439 \\
0.0375 \\
0
\end{array}\right]
\end{aligned}
$$

