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Combining Predictive and Diagnostic Supports:

posterior odds      likelihood ratio   prior odds

O(H|e) = L(e|H) O(H)

This formula allows us to update our belief about H once we have 
observed evidence e.
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Ex:
You are awakened one night by the sound of your house alarm. Every 
night one in ten thousand homes gets burglarized. There is a 95% 
chance that a burglary attempt triggers the alarm, there is a 1% chance 
that the alarm triggers by other reasons such as malfunction. What is the 
probability that your house is being burglarized?
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Pooling of Evidences

Assume that the alarm systems consists of n devices, and each produces a 
different sign.
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Let ek stand for evidence k (kth detector):
evidence k confirms the hypothesis
evidence k disconfirms

The combined belief is obtained from:

assuming that the n devices operate independent of each other.
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Recursive Bayesian Updating
Suppose we have observed n evidences 
regarding a hypothesis H.

Now, a new evidence e’ becomes available. It needs to be incorporated 
into the previous results.
Since evidences are assumed to be independent:

Thus:

So to update the belief, multiply the current posterior odds by the 
likelihood ration of e’.
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If we take the log of the above formula, we get an incremental 
updating process.

This is the weight carried by evidence e’. 
Evidence supporting the hypothesis carries a positive weight 
and that opposing it carries a negative weight.

If we later find that one of the evidences was erroneous, we 
can rectify the error using:
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Multi-Valued Hypotheses

The outcome of a hypothesis could be one of several states.

For example, burglary could be break-in through the door, or 
break-in through the window. Similarly evidence may have 
several modes.

• Refine the hypothesis space, and group the hypotheses into 
multi-valued variables. Represent conditional probabilities 
relating the hypothesis outcomes and evidences with a 
matrix.
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Ex:
Using burglary, assign H1, H2, H3 and H4 as follows:

H1 = No burglary, animal entry.
H2 = Attempted burglary, window break-in.
H3 = Attempted burglary, door break-in.
H4 = No burglary, no entry.

Each evidence, ek has the following possible values:
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Represent the conditional probabilities by a matrix:

element i, j in the matrix represents 
the conditional probability between 
the jth value of evidence k and hypothesis Hi.

  )H|P(e i
k
j =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

001
0.40.10.5
0.440.50.06
0.10.40.5

 

H
H
H
H

  )H|P(e

e       e      e                             

4

3

2

1

i
k
j

k
3

k
2

k
1



12

To compute total belief from a set of n evidences, 
do the following:

Let

In this case 4 outcomes for the hypothesis

This is not traditional vector product, it is 
the product of vectors term by term.

then:

α is a normalizing factor which will be set to ensure the 
posterior probabilities for Hi sum up to 1.
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Ex: In our last burglary example, assume we have two alarms 
each with properties given by the previous matrix. Let’s 
assume the prior probabilities are :

We hear our first detector issuing a high sound. The second 
detector in our system is silent.

e1 = high sound
e2 = silent
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Arrival of information at different times

We can update belief incrementally by using earlier posterior 
probabilities as priors for later arriving information. Let’s say 
that we first observe a high sound from our 1st device.
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Later we obtain information from our 2nd device:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

=

0
0.0375
0.0439
0.919

  

0
0.014
0.0166
0.347

 '                      

 )e|(HP  '   )e ,e|P(H 1
i

221
i

α

λα
rr


	ECE 566

