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Interval Constraint Networks
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Constraint Networks with interval and non-interval values:

In the CSP techniques we discussed,We assumed that the values

of the variables are discrete or can be instantiated discretely.

Interesting problems - When the variables can take real values.

Instantiation impossible - Infinite values.

We use the concepts developed from Interval Mathematics.
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Example Applications:
(1) Design of a Helical Spring:

Method is used to get feasible solutions by changing the 
parameters like Active number of coils,Shear modulus which
do not have  interval values and keeping the parameters like 
wire diameter and coil diameter which have interval values
constant.

(2) Robotics:
To determine a path with a given final uncertainty in the final 
orientation and location of the end-effector.

(3) Active Vision:To determine the position of the active vision
head so that the displacement errors are within the 
predetermined limits.
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Example: tolerance design.

A simple problem:

Given that dimension  X4 should be within [62,68], can the range for

the other tolerances be

X1 =[1,5] (i.e. 3±2),  X2 =[8,10] and  X3 =[50,55]?

This can be answered by asking, is the tolerance of X4 correct?

If the resulting tolerance for X4 is incorrect, what should we assign X1 , X2 , and,

X3, such that X4 lies within the given tolerance(functional requirement)?

x4

X3

X2

X1

X1 , X2 and X3 may be the individual 

part tolerances and X4 can be

the tolerance on the total length.
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Interval Arithmetic
Notation:

X,Y denote Interval valued variables.

X => [xlow, xup]

Operations on Interval valued variables: Z= X∆Y, ∆ is a mathematical operation

(1) Addition:

X+Y => [xlow, xup ] + [ylow, yup] = [xlow+ ylow , xup+ yup]

Example:

[2,3] + [1,2] = [3,5]

(2) Subtraction

X-Y => [xlow, xup ] - [ylow, yup] = [xlow- yup , xup- ylow]

Example: [2,3] - [1,2] = [0,2]
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(3) Multiplication:

X*Y => [xlow, xup ] * [ylow, yup] = [Min {xlow* ylow , xlow* yup, xup* ylow, xup* yup},

Max{xlow* ylow , xlow* yup, xup* ylow, xup* yup }]

Example: [-2,3]*[1,2] = [-4, 6]

(4) Division

X / Y = X * [1/Y]

Example: [-2,3] / [1,2] =[-2,3]

We can derive such expressions for other piecewise monotonic functions 

like logarithmic, exponential,  etc.
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Consistency of a constraint:For every value of the input variables,
There are values for the output variables such that the constraint is
satisfied. Input and Output variables are differentiated here.

Example: Start with the allowed values C=[1,5], F=[27,35], 
given constraint equation: F=1.8*C+32. 

The constraint will be consistent if C=[1,1.666] F=[27,35]
Satisfaction of the CSP: The CSP is satisfied if all constraints are 
consistent.
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New Constraint network

New Constraint network representation: Here the constraints are also 
represented by nodes in addition to the variables,each constraint node has 
multiple inputs and a single output. There is Differentiation between 
input and output.
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Notation in the new Constraint Network representation:

Representation of the Constraint Network:
A constraint network is a double, CN(X,C) where X represents a set of variables,

{X1, X2, ... , Xn}  and C represents a set of constraints, {C1, C2, ... , Cm}.  

The nodes in the constraint network represent variables or constraints.

Representation of Constraints:

A constraint has multiple inputs and a single output (MISO) and can be represented as

a triple, Ci(U,k, f()).  U is the set of input variables and k is the

output variable for the constraint Ci.  f() represents the constraint function for Ci. 

For example, if U = {X1,X2} and k = X3, and the constraint function of Ci is add(),

then Ci represents   X3 = add(X1,X2) ( or equivalently X3= X1+X2).
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Design of a Helical Spring:

Consider a Spring, the governing equation for a spring is:
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Where: K is the Spring Constant.

G : Shear modulus of the material of the spring.

D: Coil diameter of the spring.

d: wire diameter of the spring.

N: Number of coils. 

d

DG

d
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C K

Example mixed network with
interval, real and integer

variables.

Problem:

What is the right number of coils?

Is the material right?
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Forward Propagation in the Interval constraint network:

Based on the values of the input variables, we calculate the values of the output

variables and check whether all the constraints are consistent. 

Backward Propagation in the Interval Constraint network:

If any of the constraints are inconsistent, we change the values of the

input variables based on the magnitude of the inconsistency. We may restrict

changes to only some particular types of input variables. 

For example: Only the real or integer valued variables.

This is dictated by the application we have on hand.   
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Example: tolerance design.

A simple problem:

Given that dimension  X4 should be within [62,68], can the other tolerances be

X1 =[1,5] (i.e. 3±2),  X2 =[8,10] and  X3 =[50,55]?

This can be answered by asking, is the tolerance of X4 correct? (Analysis)

If the resulting tolerance for X4 is incorrect, what should we assign X1 , X2 and

X3, such that X4 lies within the given tolerance(functional requirement)?

(Synthesis)

x4

X3

X2

X1

X1 , X2 and X3 may be the individual 

part tolerances and X4 can be

the tolerance on the total length.
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Analysis and Synthesis:

Analysis

Synthesis

Entity Tolerance

X1, X2,…... Xn

Functional requirement

tolerance of a part

Analysis: Given the entity tolerances, the problem addressed by analysis is to 

make sure that the functional requirement of the design is met.

Example: Given the tolerances of a pipe’s inner and outer diameters( entity 

tolerances), tolerance analysis ensures that the pipe can withstand the maximum

and minimum pressure due to the flow through the pipe.
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Synthesis: The problem here is the inverse of analysis, From the functional 

requirement, we try to derive the the tolerances for the participating entities. 

Example: In the pipe example, from the tolerances on the acceptable pressure 

inside the pipe we derive the maximum and minimum pipe diameter.

Synthesis can be a harder problem to solve than analysis,since we need to 

determine the tolerances for the entities and the number of entities are usually 

more than the number of functional requirements. In analysis we determine 

one functional requirement tolerance based on many entity tolerances.
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We can use a constraint network to model this problem. The lowest level corresponds 

to the entities and the highest level corresponds to the functional requirement. 
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Forward Propagation: (Analysis)
If the Interval Propagated from the input intervals is not a subset of 
the output interval,The output interval should be updated. Otherwise
the constraint is consistent and we do not change anything.
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Algorithm for Forward Propagation for a Single Constraint (Analysis)
The forward propagation is based on the constraint function such that the intervals of the input 
variables are propagated to the interval of the single output variable.  In forward updating, the 
interval for the output variable is updated (relaxed) to the union of the propagated interval and the 
original assigned output interval.  
Forward Propagation for constraint, C({1,2, ..., n}, k, f() ),  FP(X1,X2, ...,Xn; Xk, f())
1. Propagate from Inputs to the Upper Limit of the Output
xkup' = f( x1ϕ, ..., xnϕ )
where xiϕ = xiup if Xk is monotonically increasing with respect to Xi.

xiϕ = xilow if Xk is monotonically decreasing with respect to Xi.
2. Propagate from Inputs to the Lower Limit of the Output
xklow' = f( x1κ, ..., xnκ )
where xiκ = xilow if Xk is monotonically increasing with respect to Xi.

xiκ = xiup if Xk is monotonically decreasing with respect to Xi.
3. Relaxing the Output
If  xkup' < xklow or xklow' > xkup ,

NO SOLUTION
Otherwise,

xkup = xkup' if xkup' > xkup.
xklow = xklow' if xklow' < xklow.
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Propagation and existence of solutions in analysis

using the algorithm given.

The Constraint network being considered

Based on the algorithm, when we get intervals which do not intersect, we do 

not have a solution. Figure above shows two such cases.
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Existence of the solution(continued)

When the two intervals we obtain are intersecting as shown above, if we are 

allowed to change the original output interval, the solution is the union of the 

two intersecting intervals.
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Forward Propagation: (Analysis)
If the Interval Propagated from the input intervals is not a subset of 
the output interval,The output interval should be updated. Otherwise
the constraint is consistent and we do not change anything.

Backward Propagation: (Synthesis)
If the constraint is not consistent, and the output interval is not to be
changed, the output interval is propagated to the input intervals by 
tightening the input intervals.
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