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What is a Constraint Satisfaction Problem(CSP)?
A CSP consists of :
•Variables - a finite number.
•Domain   - finite or infinite domain.
•Constraints - Restricting what values variables can simultaneously

take.
Example: 8 - Queens problem 
Variables: The eight queens’ positions.
Domain: The Chessboard squares.
Constraints: No queen attacks the other. 

Goal: To find an “Assignment” of variables satisfying all  the 
constraints.

A CSP is also referred to as a “Consistent labeling problem”
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Simple Classification based on the types of variables

and constraints:

(1) Discrete CSP’s (logical CSP’s). e.g. : A planning problem

Variables are symbolic variables, Constraints are logical 

constraints.    

(2)Numerical CSP’s. e.g. : a linear programming problem

Variables are numerical, constraints: functions,equations etc.
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Formal definition of a CSP:

CSP is a triple (Z,D,C)

Z: Set of variables.
Z = { x1,x2,….xn}

D: Z -> set of objects of any type.
D maps variables Z to abstract objects in the real world.

For each variable:
Dxi = The set of possible values for variable xi.

(domain of xi )

C: Set of Constraints. (Set of sets of compound labels)



6

Z   =  A,B,C. (Variables)

D i = Red,Blue,Green. (For each variable) , i = A,B,C.
Domain of the variables.

C   = No two adjacent regions have the same color.
=  A != B, A != C, B != C.

(Set of constraints)

Map Coloring Problem.
Colors given:Red,Blue,Green.

A
B

C

Example of a simple CSP.
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Examples of problems that can be modeled as CSP’s:
• Machine Vision.(Waltz)
• Job-Shop Scheduling.(Prosser,Fox etc.)
• Graph problems.(Haddock)
• Temporal and Spatial Reasoning.(Tsang)
• Electrical Circuit Design.(Sussman,Steele)
• Mechanical Design.(Serrano,Nudel,Navinchandra etc.)
• Diagnostic Reasoning.(Pearl)
• Constraint programming.(Uses CSP concepts)

Why CSP’s?
- Many Design and Engineering problems can be formulated 
as CSP’s.

- Algorithms using special features of a CSP
are available for effective solution.
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Constraint Network: 
It is a graphical representation of a CSP where Nodes 
represent variables and Arcs represent constraints.

Binary CSP - Constraint graph. 
General CSP - Constraint Hyper-graph.

Constraint Graph:

A

B

C

A

B C

<Green>

<Red,Blue,Green> <Blue,Green>

B      CMap Coloring Problem.
Colors that can be used:  
Red , Blue , Green.

≠

≠

≠A      B A      C

Constraints:
Adjacent colors 
different.
A (Green only)
B (An color)
C (Blue or Green)
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Label: variable-value pair assigning a value to the variable.
Notation: L = <x,a>
Example:   L1 = < A,Red >
Here variable “A” is assigned the value “Red”.
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Compound label: Simultaneous assignment of values to a set of 
variables.
Notation: CL = (<x1,v1> <x2,v2>. . . . . . . <xn,vn>)
Example:  CL1=(<A,Red>,<B,Green>,<C,Blue>).

Here a simultaneous assignment is made to three variables A, B 
and C simultaneously.

k- Compound label: A Compound label assigning values to k 
variables simultaneously.

Example: CL1 above is a 3- compound label.
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Constraints: Sets of legal compound labels for  sets of variables.
(Restrictions on what values the variables can simultaneously take.)

Notation: Cs  - S may be a variable or a set of variables.
Constraints may be defined with equations, with predicates, with
computational procedures (functions), or with sets of legal 
compound labels

Example : 
A constraint in a discrete CSP.
for A not equal B in a map coloring problem assume that domain
of A = <Red> and that of  B = < Red, Green, Blue>.
we can conceptually visualize this as a set of all legal compound 
labels
CAB= ( (<A,Red>,<B,Green>), (<A,Red>,<B,Blue>) )
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Unary Constraints: Constraints on only one variable.
Example: Variable A not equal to “Red” 

Binary Constraints: relationship between two variables.
Ex: A is not equal to B   

Constraint  Expression(CE) of a set of variables S: Set of all the 
constraints on the set S and constraints on all subsets of S.
Notation: CE(S)
Example: Let a set S = { A,B,C}, Then CE(S) includes all the 
Unary, binary and ternary constraints.
CE(S) = { CA , CB, CC, CAB, CAC, CBC, CABC }
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• General CSP: A CSP which is not limited to Binary 
relationships.

• Lot of research in CSP literature refers to Binary CSP’s.

• (Any CSP can be converted to a Binary CSP)
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Satisfiability: Shows us that the problem is solvable and  a 
solution exists.

k-satisfiability:A k-compound label CL satisfies a constraint 
expression CE if and only if CL satisfies all constraints in CE.
In the above example if a 3-compound label is 
CL= (< A, Red>, < B, Blue>, <C, Green>) then CL 3-satisfies
CE(S) if and only if it satisfies all the unary, binary and
ternary constraint in CE(S).
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k-satisfiable CSP: For all subsets of k-variables,We can find legal 
values for all the k-variables.
(Note that the total number of variables in the CSP may be n  > k).
Example: Consider a CSP with three variables A, B and C.
It is 2-satisfiable if all constraints are satisfied for all sets of 2 
variables, i.e. Constraints on AB, AC, and BC.

Satisfiable CSP: A CSP which has n-variables is “Satisfiable” if it 
is n-satisfiable (Means that a “solution tuple” exists).

Solution tuple for a CSP: A solution tuple for a CSP is a compound 
label for all the variables satisfying all the constraints.
Example: for a 3- variable map-coloring problem
solution tuple = (< A, Red>, <B, Blue>, <C, Green>) 
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Types of solution for a CSP:
• One solution.
• All solutions.
• Optimum solutions.
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Types of solution for a CSP:
• One solution.
• All solutions.
• Optimum solutions.
Features of CSP’s:
CSP’s can be solved as search problems.
• In discrete CSP’s: Size of the search space is finite.

Number of leaves in the search tree, L = | DX1| . | DX2|........ | DXn|
where | DXi| = Size of the domain of each variable. 
Number of  internal nodes: 1+ | DX1| . | DX2|........ | DXn|
Ordering affects number of nodes.
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Types of solution for a CSP:
• One solution.
• All solutions.
• Optimum solutions.
Features of CSP’s:
CSP’s can be solved as search problems.
• In discrete CSP’s: Size of the search space is finite.

Number of leaves in the search tree, L = | DX1| . | DX2|........ | DXn|
where | DXi| = Size of the domain of each variable. 
Number of  internal nodes: 1+ | DX1| . | DX2|........ | DXn|
Ordering affects number of nodes.

• Depth of the tree is fixed.
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Types of solution for a CSP:
• One solution.
• All solutions.
• Optimum solutions.
Features of CSP’s:
CSP’s can be solved as search problems.
• In discrete CSP’s: Size of the search space is finite.

Number of leaves in the search tree, L = | DX1| . | DX2|........ | DXn|
where | DXi| = Size of the domain of each variable. 
Number of  internal nodes: 1+ | DX1| . | DX2|........ | DXn|
Ordering affects number of nodes.

• Depth of the tree is fixed.
• Subtrees in the search tree are similar.
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Features of CSP’s

A

B C

<Green>

<Red,Blue,Green>

B      C

≠

≠

≠A      B A      C

<Blue,Green>

The CSP
Search space

A= Green

B= Green

B= Blue

B= Red

C= Green

C= Blue

C= Green C= Green

C= Blue C= Blue

The number of leaves = | DA| . | DB|. | DC| = 1 x 3 x2 =6.

Number of internal nodes: 1+ | DX1| . | DX2|........ |DXn|= 1 + 1 +1 x 3 +1 x 3 x 2 =11

Ordering: A,B,C.
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Search space

A= Green

C= Green C= Blue

B= Green

Features of CSP’s, Ordering affects the size of search space.

B= Red B= Blue B= Green B= Red B= Blue

Number of internal nodes: 1+ | DX1| . | DX2|........ |DXn|= 1 + 1 +1 x 2 +1 x 3 x 2 =10

Ordering: A,C,B.

Note: with this ordering the number of internal nodes is 10, In previous case it was 11. But the

number of leaves does not change.

The order with ascending order of domain size

gives the least number of internal nodes.

This is the least for the given problem.
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Example of a general search strategy

The simplest algorithm for solving a search problem

is the Chronological Backtracking.
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Solution using a general search strategy

The simplest algorithm for solving a search problem

is the Chronological Backtracking.
The algorithm works as follows:

(1) Pick a variable from the  set of variables.

(2) Assign a value for the variable from the domain to

form a compound label. If the compound label satisfies all

constraints, go to (3), else backtrack and pick another value

If no value can be picked, then problem has no solution.

(3) Check if all the variables are labeled. If yes,Then the 

compound label is the solution tuple. If no, then go to (1). 
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Unlabeled         pick   value   compound label

(1) {A, B, C}      A     Green    {<A,Green>}

No constraints violated , Pick another variable.

(2)  {B,C} B      Green   {<A,Green>, <B,Green>}

Constraint violated, Backtrack and Pick another value for B

(3)  {B,C} B       Red      {<A,Green>, <B,Red>}

No constraints violated , Pick another variable.

(4)  {C}              C      Green    {<A,Green>, <B,Red>, <C,Green>}

Constraint violated, Backtrack and Pick another value for C.

(5)  {C}              C      Blue     {<A,Green>, <B,Red>, <C,Blue>} 

No constraints violated and no more variables unlabeled.

So the compound label is the solution.

A

B C

<Green>

<Red,Blue,Green>

B      C

≠

≠

≠A      B A      C

Example of Chronological Back tracking:

<Blue,Green>
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In the previous example we saw there were instances where

backtracking occurred.(Steps 2 and 4).

The temporal complexity of the algorithm is O(ean) and the spatial 

complexity is O(log n) where n is the number of variables, e is the 

number of constraints and a is the domain size.

Backtrack free search: If a solution can be found using the 
backtracking algorithm without any backtracking.

Definition: A search is backtrack free in an ordering if for 
every variable that is to be labeled , we can find a value for it 
compatible with all the variables assigned before.
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Problems with the simple backtracking algorithm:

Inefficient: More operations than necessary.

Reasons:

(1) Local view of the problem.(Trashing behavior)

In the algorithm, attention is focussed on the present variable and not the 

problem as a whole.Consider n variables x1 ….xn. Suppose we have assigned 

values for variables  x1 to x n-1. Suppose that we assign a certain value to xn

that is incompatible with the first variable x1 ,the algorithm will backtrack to 

the previous variable xn-1 and try out all values, and so on till it goes back 

and assigns a different value for x1.Many backtracks avoidable - If 

knowledge that x1 is causing problem is available.
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(2) No learning property: Consider variables xi, xj and xn. Assume that when 
we assign values,we first assign values to xi ,then to xj and then to xn.If some 
value of the domain in xn is incompatible with xj, then this will be detected when 
we first assign values to xj, and try to assign values to xn. Assume that due to 
some backtrack we have to go back to xi, Now when we assign some value to xj, 
we also have to assign values to xn , the algorithm does not remember that a 
certain value of xn was incompatible with a value of xj,  the algorithm checks for 
the particular value in xn that was causing the problem, again. 

Both these concepts can be easily understood by the example which follows.
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Example:

Consider a simple CSP consisting of the three variables x,y,z whose domains are respectively

Dx={4,5,6} Dy ={1,2}  and Dz={2,3}

The Constraints given are x+y+z  > 10  x+z > 8 and y+z  >4   
Consider the trace of a backtracking algorithm:
Step x y z Cxyz Cyz Cxz

1 4 1 2 No No No
2 1 3 No No No
3 2 2 No No No
4 2 3 No Yes No
5 5 1 2 No No No
6 1 3 No No No
7 2 2 No No No
8 2 3 No Yes No
9 6 1 2 No No No

10 1 3 No No No
11 2 2 No No No
12 2 3 Yes Yes Yes

(1) For local view observe that we can only satisfy the constraint x+z > 8 only if  x > 5 , But the backtracking 
algorithm doesn’t use this fact, backtracks 10 times before it finds the solution. 

(2) For the no learning property consider the constraint y + z > 4. Note steps 1 to 4, we discovered that only the 
value of y=2 and z =3 will satisfy this property. But when we backtracked to x  and changed x to 5, we never use 
this fact and carry out the backtracks for y and z (Steps 5 to 7) and discover this again.

We assume that the back-tracking 
algorithm chooses the variables in 
this order i.e x, y and z.  

C xyz denotes constraints on x,y and 
z and similarly Cxz and Cyz denote 
constraints on X,Z and Y,Z 
respectively.

“No” signifies that constraint is not 
satisfied.
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Overview of Problem reduction:
• Transform original CSP to new equivalent problem.

(Equivalent problem: A problem with same sets of variables and solution
tuples as the original problem).

• Problem may be easier to solve.
• Easier to recognize insoluble problems.
A preprocessing step, It is rare that a solution can be obtained by only problem 
reduction.
Reduction process:
• Modify Domains: Remove redundant values.

Redundant - Don’t appear in “any” solution tuple.
• Tighten Constraints: Fewer compound labels satisfy constraints , i.e. remove 

redundant compound labels.
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Ex: 

(1) DX={1,2,3,4,5}. If constraints are x < 4 and x < 5.
Value 4,5 are redundant. Also we note that the Constraint x< 5 is 
redundant.

(2) Example for redundant compound label: Consider three variables, A,B 
and C. Assume that binary constraints exist between each of these 
variables.
Consider a compound label (<A,a>,<C,c>) satisfying constraints on A 
and C,
This can be a redundant compound label, If we cannot assign any value 
b to B such that (<A,a>,<B,b>) or (<B,b>,<C,c>) can be satisfied.
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Gains from reduction:
• Reduction in search space.
• Avoiding repeatedly searching futile sub-trees.
• Detect insoluble problems.

How to detect Redundant values?
By using the Consistency techniques.

Minimal Problem:
• No Redundant Values in the domain and No redundant 
Compound labels in the constraints.
• Reduction to a Minimal problem is a NP-hard problem.
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Fundamental Concepts in CSP:
How to detect redundant values and compound labels for problem
reduction ?
• Consistency Techniques

-defined such that presence of redundant values and 
redundant compound labels falsifies consistency 
requirements. Neither a Sufficient nor a Necessary condition
for a problem to be solvable.
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k - Consistency: For all (k-1) compound labels satisfying the 
constraints we can add an additional label to form a k-compound 
label satisfying all the relevant constraints.

Consistency:
1 - Consistency: Every value in every domain satisfies Unary 
Constraints on the variable.
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A
B  C

C

B

A  B≠

≠

D

E

B  C≠

C  D≠
C  E≠

D  E≠

Example for k-consistency:

(R,G,B) are the values that the variables can take, red, green and Blue. 

We can show that this problem is  5-consistent, i.e for all 4-compound 
labels satisfying all the constraints, we can add another label to get a 5-
compound  label satisfying all the constraints.

(R,G,B)

(R,G,B)

(R,G,B)

(R,G,B)

(R,G,B)
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K-consistency continued.

The table below shows the 4-compound labels(values) for the variables A,B,

C and D, It shows  that we can select a value for E in the domain to make a 5-

compound label satisfying all the constraints.Thus it is 5-consistent.

The table shows the situation when A takes the value Blue, we can show that the 

same situation applies when A takes Red or Green, and also when we consider the

other variables and assign alternate values to them.

A B C D E
(Variables)
Blue Red Red Green Blue
Blue Red Green Blue Red
Blue Red Red Blue Green
Blue Green Red Blue Green
Blue Green Green Red Blue
Blue Green Green Blue Red
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B
B  C

CA

A  B
{r,b}

{r}{r}

3-consistent CSP but
not 2-consistent.

k - Consistency does not imply k-1 Consistency.

≠ ≠

In the above example: problem is 3- consistent because for the  2-compound 
labels which are consistent (<A,r>,<C,r>), (<A,r>,<B,b>) (<B,b>,<C,r>) 

We can add another label(<B,b>, <C,r> and <A,r> respectively for the above 2-
consistent labels.) to get a 3-compound label satisfying the constraints.However it 
is not 2-consistent( we can never use <B,r>  to get a 2-compound label satisfying 
the constraints).(Recall definition of 2-consistency.)

Strong k-Consistency : CSP is 1,2,3........... k-Consistent
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Special Consistency definitions for Binary CSP’s: 

•Node Consistency:Each possible node value satisfies the constraint 
involving only that variable.(Same as 1-Consistency).

•Arc Consistency: Consider an arc(x,y),The arc is arc-consistent if 
for every value of x in its domain,We can find a value for y 
satisfying the constraint

•A CSP is arc-consistent if all its arcs are arc-consistent. 
(Same as 2- Consistency)
Node consistency and Arc consistency can be used to 
remove redundant values in the domain.
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Path Consistency:

X1
X2 X3

Xn

. .. ... ..... ..

For a compound label (<x1,v1>,<xn,vn>) satisfying all constraints on
x1 and xn, we can find values for all the variables (x2, x3…... ,xn-1) in 
the path satisfying the binary constraint for each arc in the path.A 
CSP is path-consistent if all its paths are path-consistent. 

Directional Arc and Path Consistency:
Here the variables are ordered.
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(Removal of Redundant Values and Constraints)

Node Consistency: removes redundant values.

Path Consistency: stronger condition than Arc consistency

not only removes redundant values, but also redundant 

compound labels.

Arc Consistency: stronger condition than node consistency

removes more redundant values.

The time complexity of reduction is less in many cases than 

searching and this offers good benefits in problem solving over 

using just searching without problem reduction.

Why do reduction at all?
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Problem Reduction Cost Savings

Remove redundant values from domains,tighten constraints without

losing solution tuples.

Problem Reduction Equivalent problem

Computational

Cost

Amount of problem reduction

problem reduction cost(R)

Search cost(S)

Total cost, R+S+Overhead
Efforts for complete reduction
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A

B C

<Green>

<Red,Blue,Green> <Blue,Green>

B      C

≠

≠

≠A      B A      C

Applying Problem reduction
A

B C

<Green>

<Red> <Blue>

B      C

≠

≠

≠A      B A      C

Redundant values in variable domain

removed

Example to show Problem reduction:
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How search efficiency is increased by problem reduction?

A

B C

<Green>

<Red,Blue,Green>

B      C

≠

≠

≠A      B A      C

<Blue,Green>

Original Search spaceThe Original problem

A= Green

B= Green

B= Blue

B= Red

C= Green

C= Blue

C= Green C= Green

C= Blue C= Blue
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A

B C

<Green>

<Blue>

B      C

≠

≠

≠A      B A      C

Redundant values in variable domain

removed

The problem after reduction

<Red>

Reduced Search space

A= Green

B= Green

B= Blue

B= Red

C= Green

C= Blue

C= Green C= Green

C= Blue C= Bl

The bold lines indicate the new- search space,the
dotted lines are pruned.

ue

The reduced problem here is backtrack free
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An Algorithm for Arc-Consistency achievement

An arc ( Vi, Vj) can be made consistent by simply deleting values from the domain of Di (Vi) for which 
we cannot find consistent values in the domain of the variable Vj.The following algorithm which does 
that will be used as a part of the algorithm for Arc-consistency.

Algorithm REVISE

procedure REVISE(  (Vi , Vj ), (Z,D,C) )
DELETE < - false;
for each X in Di do

if there is no such Vj in Dj such that ( X, Vj ) is consistent,
then
delete X from Di ;
DELETE <- true;

endif ;
endfor ;

return DELETE;
end REVISE

We have to note that when we revise the domain of a variable Vi,then each 
previously revised arc (Vk, Vi) has to be revised since some of the values in the 
domain of Vk may no longer be compatible, since we may have deleted some 
values from Vi .
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A

B C

<Green>

<Red,Blue,Green>

B      C

≠

≠

≠A      B A      C

<Blue,Green>

Example: Consider this problem which was discussed earlier, B and C

are initially consistent, But when we make A and C consistent by

deleting Green from the domain of C, B and C become inconsistent

because we do not have a value for C when B is assigned value Blue.

Here’s an algorithm called AC-3 which uses algorithm

REVISE( ) to achieve arc-consistency in an entire graph.

procedure AC-3 (Z,D,C)
Q <- {  (Vi  ,Vj )∈ arcs(G), i ≠ j };

while Q not empty
select and delete any arc ( Vk ,Vm ) from Q.
if (REVISE( (Vk ,Vm),(Z,D,C)) then
Q ∪ {  (Vi ,Vk) such that (Vi ,Vk)∈ arcs(G), i ≠ k, i ≠ m }
endif;

endwhile;
end AC-3

We note that we use the Revise( (Vi, Vj,) , (Z,D,C) ) procedure defined earlier 

in this algorithm.
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Working of the AC-3 algorithm

A list of arcs Q is maintained, We remove  one arc ( Vk, Vm) from the list and 
choose a value X in the domain of Vk , and see if there exist values for Vm such 
that the constraint on this arc is satisfied, If no such value is available, we 
delete X from the Dk. The above steps are carried out by the REVISE algorithm. 
When any values in the domain of Vk are changed, we include into the list Q, 
arcs that may be possibly affected by this deletion, i.e. All the arcs that are 
connected to Vk , (Vi,Vk ) are added.

Various revisions of the above algorithm are available, These are called AC-1, 

AC-2 and AC-4. Similarly for Path-Consistency we have PC-1, PC-2, PC-3 

and PC-4. [Foundations of Constraint Satisfaction, E.Tsang, 1993]
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A

B C

<Green>

<Red>

B      C

≠

≠

≠A      B A      C

<Blue>

It is easy to verify that using the above 
algorithm modifies the original problem 
to the arc-consistent problem shown 
here. Here we can now solve the problem 
without any back-tracking, But this is not 
so in general. (Arc-consistency is not a 
strong enough condition to always 
eliminate back-tracking)
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Comparison between the various algorithms:

Algorithms: (T-Time complexity and S-Space complexity)

(1) Node Consistency algorithm- just removes values not-satisfying

unary constraints. T=O(an), S= O(an).

(2) Arc Consistency algorithms(achieves node consistency also)

AC-1,AC-2, AC-3, AC-4 (improvements in temporal efficiency).

AC-1, T=O(a3ne), S= O(e+an).

AC-3, T=O(a3e), S= O(e+an).

AC-4, T=O(a2e), S= O(a2e).

(3) Path Consistency algorithms:

PC-1, T=O(a5n5), S= O(n3a2).

PC-2, T=O(a5n3), S= O(n3+n2a2).

PC-4, T=O(a3n3), S= O(n3a3).

a  = domain size.

e = number of constraints.

n = number of variables.
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Relationship between Consistency and Satisfiabilty:

• k-Consistency is insufficient to guarantee satisfiability in a CSP
with more than k-variables.

• Path Consistency is not a necessary condition for satisfiability.

Satisfiability Theorem:
A CSP which is 1-satisfiable and strong k-consistent is k-satisfiable
for all k.

Theorem due to Freuder: (Condition for back-track free search).
A Binary CSP is backtrack free if the constraint graph forms a tree 
and both node and arc consistency are achieved.
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