ECE 566

Knowledge Systems with Frames (structured objects)

G1 OC2
Element-of: Giving_events Element-of: Occupation_eventsgiver: Johnrecip: Mary
worker: Mary
profession: Lawyer
obj: Book
OC1 ADR1
Element-of: Occupation_events Element-of: Address_eventsworker: John
person: Johnprofession: Programmer
location: 37-maple-st
JOHN
Element-of: Persons
MARY
Element-of: Persons
PROGRAMMER
Element-of: Jobs
LAWYERElement-of: Jobs
37-MAPLE-STElement-of: Addresses
BOOK
Element-of: Phys_objs
PERSONS

Delineations and Prototypes

This type of deduction is used when an implication asserts properties about every member of a set.

Ex: Given the assertions "All Computer Science students have graduate standing", and "John is a Computer Science student", we should be able to deduce "John has graduate standing".

In predicate logic, we would have:

```
Fact: EL (John, CS_Students)
Rule: EL (?x, CS_Students) => EQ [class(?x), Grad]
Goal: EQ [class (John), Grad]
```

A production system may then go either backward or forward to prove the goal.

In frame language, we would have:

Fact:

John

Element-of: CS_Students

Goal:
John

class: Grad

In the frame formalism, a special kind of frame called a delineation unit is used to describe properties of each of the individuals in a set.
We use a delineation to describe Computer Science students:

$$
\begin{gathered}
\text { ?x } \mid \text { CS_Student } \\
\text { major: CS } \\
\text { class: Grad }
\end{gathered}
$$

Thus a delineation is a universal variable, whose domain of quantification is the given set.

Delineations are sometimes called Prototypes by some AI systems.

Delineation frames can then be used to generate new frames, by instantiating (substituting a constant for a variable) the delineation frame.

John
Element-of: CS_Students
matches ?x | CS_Student (the variable ?x matches with element-of CS_Students). Applying the delineation unit, adds to the John fact unit the slots for major and class.

John

Element-of: CS_Students
major: CS
class: Grad

Goal with Existential Variables

A goal frame such as:

$$
\begin{aligned}
& \text { ?y } \\
& \text { class: Grad }
\end{aligned}
$$

is used to find out which individual has graduate standing.

In the backward direction, matching this with frame
?x | CS_Students would create the subgoal

$$
\begin{aligned}
& \text { ?y } \\
& \text { Element-of: CS_Students }
\end{aligned}
$$

This subgoal then matches the John unit, with substitution \{John/?y $\}$.

Procedural Attachment

We can associate computer programs with slots of delineations. Then these programs can be invoked to execute (with argument values) to produce slot values for instances of the delineation.

Ex: Suppose a given slot-value is equal to the multiplication of two other slot-values (e.g. V=IR).

$$
\begin{aligned}
& \text { ?x } \mid \text { Resistor } \\
& \text { I: (current through R) } \\
& \text { R: (resistance value) } \\
& \text { V:Times[I(?x), R(?x)] }
\end{aligned}
$$

Procedures occurring in delineations are executed whenever the value of the given slot is accessed.

Frame Rules

Are used for expressing information not about all members of a set. Frame rules have two parts, ANTE and CONSE. Each is a list of frame units possibly containing variables.

In the forward direction, if all ANTE frames are matched, instantiated CONSE frames are added to the set of fact frames. If some of the fact frames (slots, slot values) already exist, we only add the new properties mentioned in the CONSE frames.

In the backward direction, one of the CONSE frames must match the goal frame. If this succeeds, the frames in the ANTE are set up as subgoal frames.

Ex: Suppose we want to represent that if a department has a manager and some worker, then they both work in the same department and the manager is the boss of the other person. R1
ANTE:
? X
Element-of: Departments manager: ?y
?y
Element-of: Employees
CONSE:
?y
Element-of: Employees
works_in: ?x
boss_of: ?z

Element-of: Employees works_in: ?x
?z
Element-of: Employees
works_in: ?x
boss: ?y

Review and Exercises

1. Represent the following information:
"John gave Mary the C Book."
$(\exists$?z)[EL(?z, Giving_Events) \wedge
EQ(giver(?z), John) ^
EQ(recip(?z), Mary) ^
EQ(obj(?z), C_book)]
\downarrow Skolemize ?z
G1
Element-of: Giving_Events
giver: John
recip: Mary
obj: C_book
2. Show how the following query is represented and answered using frameds:
"What did John give Mary?"

First we construct a Goal frame. Recall that in goal units variables have existential, while in fact units they are assumed to have universal quantification.
$\frac{\text { ?x }}{\text { EL: Giving_Events }}$
giver: John
recip: Mary
obj: ?v

$$
\text { S = \{G1/?x, C_book/?v\} }
$$

3. Show how the following information is represented. "John gave something to everyone."

In first order logic:
EL(?x, ?y)
\leftarrow ?x is an element of set ?y
Giving_Events
John
giver(?x) $\quad \leftarrow$ giver in the giving event ?x
recip(?x) $\quad \leftarrow$ recipient in the giving event ?x
obj(?x) $\quad \leftarrow$ what is given in event ?x
$(\forall$?y) $(\exists$?z) $(\exists$?t)[EL(?z, Giving_Events) \wedge
EQ(giver(?z), John) ^
EQ(recip(?z), ?y) ^
EQ(obj(?z), ?t)]

Skolemizing existential variables, we get:
(\forall ? y$)$ [EL(g(?y), Giving_Events) ^
EQ(giver(g(?y)), John) ^
EQ(recip(g(?y)), ?y)^
EQ(obj(g(?y)), sk(?y))]
g(?y)
Element-of: Giving_Events
giver: John
recip: ?y
obj: sk(?y)

S2 $=\{$ Mary/?y, sk(Mary)/?v, g(Mary)/?x $\}$
4. Suppose we have two frame types, Dept frames and Employee frames:

Dept
Element-of: departments
name: dept. name
manager: an employee

Employee
Element-of: employees
name: employee name
works-in: a department boss: an employee
(a)Write the following expressions as frames

> Manager(PURCHASING-DEPT, JOHN-JONES) Works-in(PURCHASING-DEPT, JOE-SMITH)

Manager(PURCHASING-DEPT, JOHN-JONES)
 Works-in(PURCHASING-DEPT, JOE-SMITH)

e1
Element-of: employees
name: JOE-SMITH
works-in: d1
d1
Element-of: departments name: PURCHASING-DEPT manager: e2
e2
Element-of: employees name: JOHN-JONES
(b) Write the following as a frame-based rule.

[Works-in(?x, ?y) \wedge Manager(?z, ?y)] \Rightarrow Boss - of(?y, ?z)

ANTE:

?y
Element-of: employees works-in: ?x

?x
Element-of: departments manager: ?z

?z
Element-of: employees

CONSE:

?y
Element-of: employees
works-in: ?x
?z
Element-of: employees
works-in: ?x
boss: ?z
(c) Using your frame system, show that: JOHN-JONES is the boss of JOE-SMITH
e1
Element-of: employees
name: JOE-SMITH
works-in: d1
d1
Element-of: departments
name: PURCHASING-DEPT
manager: e2
e2
Element-of: employees
name: JOHN-JONES

