
1

ECE 566

Representing Knowledge via
Frames(structured objects)

2

Frames aggregate several related predicate calculus
expressions into larger structures (sometimes called objects)
that are identified as important objects in the domain.

Structure carries some of the representational and
computational burden. Certain operations, which would have
otherwise been performed by explicit rule application, can be
performed in an automatic way.

3

Suppose we want to represent the following:
1. John gave Mary the book.
2. John is a programmer.
3. Mary is a lawyer.
4. John's address is 37 Maple Street
The following would be a predicate logic representation:

Individual constant symbols refer to six entities, John, Mary,
Book, Programmer, lawyer, 37-Maple-St, in this small
database.

St)-Maple-37 (John, Address
 Lawyer)(Mary, Occupation

 r) Programme(John,Occupation
Book)Mary,Give(John,

∧
∧

∧

4

As the database grows (we add other entities, and other
information about these same entities), it would be helpful to
gather all of the facts about a given entity into a single group.

Ex: Facts associated with John:

John
Give (John, Mary, Book)
Occupation (John, Programmer)
Address (John, 37-Maple-St)

5

Similarly for Mary:

Mary
Give (John, Mary, Book)
Occupation (Mary, Lawyer)

There is nothing wrong to have a fact (such as giving)
associated with two different entities.

6

In most object-centered representations only binary predicates are
used to express facts about objects => we have to convert n-ary
predicates in (n+1) binary predicates.

Ex: We need to convert the three-argument predicate
Give (John, Mary, Book) into one involving binary predicates.

We create a class of events called Giving_Events, of which the
action of giving the book to Mary by John is a member of (or
element of). All Giving_Events have a recipient, an object, and a
giver. Then, Give (John, Mary, Book) can be converted to:

EL denotes set membership.

Book)]Obj(?x,Mary)Recip(?x,
John)Giver(?x,nts)Giving_Eve?x)[EL(?x,(

∧∧
∧∃

7

Skolemizing the existential variable in the above formula, we
get:

where G1 is a particular name for our giving event.

=> We have converted the three-argument Give predicate into
conjunction of four binary ones.

Book)Obj(G1,Mary)Recip(G1,
John)Giver(G1,)EventsGiving_EL(G1,

∧∧
∧

8

Using only binary predicates has advantages, most important
is modularity.

Most object-centered representations use 3 generic
predicates to represent all entities. These predicates are:

EL: Element of a set
SS: Something is subset of another set
EQ: An attribute is equal to a value

Instead of other binary predicates, then functions are used.

9

Ex: The original set
of expressions can be
represented as:

10

Note: The above "frames" share a common structure. First an EL predicate
to describe which set the frame is a member of, (or this can be SS, if the
unit itself is a set). Another term by which this predicate is sometimes
referred to is instance-of. Second the values of different functions of the
object.

Instead of EQ [giver(G1), John], we can simply use "giver: John". Then
we get:

G1
Element-of: Giving_events
giver: John
recip: Mary
obj: Book

Constructs like "giver: John" are called slots, where giver is the slot-name,
and John is the slot-value.

11

G1 OC2
Element-of: Giving_events Element-of: Occupation_events
giver: John worker: Mary
recip: Mary profession: Lawyer
obj: Book

OC1 ADR1
Element-of: Occupation_events Element-of: Address_events
worker: John person: John
profession: Programmer location: 37-maple-st

Other entities in our domain might similarly be described by the following units:

JOHN LAWYER BOOK
Element-of: Persons Element-of: Jobs Element-of: Phys_objs

MARY 37-MAPLE-ST PERSONS
Element-of: Persons Element-of: Addresses Subset-of: Animals

PROGRAMMER
Element-of: Jobs

12

The value in a slot can also be a function, and not a constant.
Ex: G1

Element-of: Giving_events
giver: John
recip: Mary
obj: Book

G2
Element-of: Giving_events
giver: Bill
recip: recip(G1)
obj: Pen

which says "Bill gave the pen to the person to whom John
gave the book".

13

We can also accommodate quantified variables.
Ex: John gave something to everyone.

Skolemization replaces variables ?y and ?z by functions of ?x:
g(?x)

Element-of: Giving_events
giver: John
obj: sk(?x)
recip: ?x

The remaining variables are universally quantified.
The scope of universal variables in objects is the entire object.

?x]}y),EQ[recip(?
?z],EQ[obj(?y)

John]y),EQ[giver(?
nts)Giving_Eve?z){EL(?y,?y)(?x)((

∧
∧

∧∃∃∀

14

Object-based knowledge systems, may provide some generic
functions like: the_set_of, intersection, union, and
complement are also allowed.

"John or Bill bought a Ford or Chevy which was not a
convertible" :

B1
Element-of: Buying_Events
buyer: the_set_of (John, Bill)
bought: (element_of intersection

(union (Ford, Chevy),
complement (Convertibles)))

15

Reasoning with Structured Objects

1. Matching:

Two objects match if and only if the predicate logic
formula associated with one of them unifies with the
predicate logic formula for the other.

We usually have a goal object that we want to match against a
fact object. The goal object matches the fact object if the goal
object unifies with some sub-conjunction of the formulas of
the fact object.

16

Ex: Fact object:

M1
Element-of: Marriage_Events
male: John_Jones
female: Mary_Jones

The associated predicate logic formula is:

)Mary_JonesM1),EQ(female(
)John_Jones),EQ(male(M1

vents)Marraige_EEL(M1,
∧
∧

17

This fact matches the goal unit:

M1
Element-of: Marriage_Events
male: John_Jones

It doesn’t match :

M1
Element-of: Marriage_Events
male: John_Jones
female: Mary_Jones
duration: 10

18

Matching Structures with Variables:
Variables that occur in fact structures have implicit universal
quantification, variables that occur in goal structures have implicit
existential quantification.

Ex: Suppose we want to find out "to whom did John give the book?"
We represent this with the following goal frame:

?x
Element_of: Giving_Events
giver: John
recip: ?y
obj: Book

Matching this with the frame G1 yields this substitution: {G1/?x,
Mary/?y} which produces the answer.

19

To match objects containing functional expressions for slot
values, we evaluate the functional expressions first whenever
possible.

Ex: Suppose we have the query "Did Bill give Mary the pen?”
It is represented as :

?x
Element-of: Giving_Events
giver: Bill
recip: Mary
obj: Pen

20

Suppose the fact units are as we had before:

G1
Element-of: Giving_Events
giver: John
recip: Mary
obj: Book

G2
Element-of: Giving_Events
giver: Bill
recip: recip(G1)
obj : Pen

recip(G1) is first evaluated to Mary, then our goal unit
matches G2.

	ECE 566

