
1

Heuristic Search:
The problem of local maxima arises because Hill-Climbing
makes irrevocable decisions at each point in search space.

A search that uses one or more items of domain-specific
knowledge to traverse state-space is called heuristic search. A
Heuristic is a rule of thumb, and may not be guaranteed to
succeed, but it is useful in most cases.

Heuristic search works the same way as hill-climbing except
the next node to be expanded is selected among all possible
nodes, not just the successors of the current state.

2

An Algorithm for Heuristic Search:

1. Create a search graph G, consisting solely of the start node S. Put S on a
list called open.

2. Create a list called closed, which is initially empty.
3. Loop: If open is empty, exit with fail.
4. Select the first node from open, remove it from open and put it on

closed. Call this node n.
5. If success(n) = true, then exit with success (to find the solution trace

back from n to s.)
6. Expand node n, generating the set, M, of its successors, and put them in

G as successors of n.
7. Establish a pointer to n from those members of M which are not already

in G (that is not already in open or closed). Add these members to
open. For those members of M which are on closed and their children,
determine if their back pointers should be changed, and if so change.

8. Reorder the list open according to heuristic merit of each element.
9. Go to Loop.

3

an open node

a closed nodeS

6

5

2

1

3

4

10

11

15

List Closed
S
6
3
2
:
:
1

List Open
4
5
:
:

10
11
1
15

4

5

State space
generated in
heuristic
search of the
8-puzzle

6

open and closed
as they appear
after the third
iteration of
heuristic search

7

Evaluation Functions

We use the function f(n) to evaluate the promise of node n.
f(n) must be the estimate of the cost of a minimal cost path from
the start node to a goal node constrained to go through node n. f is
then used to order the nodes in open in step 8 of the previous
algorithm.

8

Designing Optimal Evaluation Functions:
Let K(ni, nj) be the actual cost of a minimal cost path between two
arbitrary nodes ni and nj. Then for a particular goal node tn, K(n, ti) gives
the minimal cost path from n to that goal node.

Let
h*(n) = min K(n, ti)

thus h*(n) is an optimal path cost from n to a goal.

Similarly
g*(n) = K(s, n)

cost from start node to node n.

then
f*(n) = g*(n) + h*(n)

will be an evaluation function which at any node n gives us the cost of an
optimal path from s to a goal node constrained to go through n.

9

To design an evaluation function, develop one which looks like
f(n) = g(n) + h(n)

and estimates the components of f* well.

An obvious choice of estimate for g*(n):

g(n) = Σ arc-costs while tracing from n to s on the best path
found so far.

=> g(n) >= g*(n)

Question:
For what value of f(n) will we produce breadth-first search?

10

Claim:
If h is a lower bound on h* (that is, if h(n) =< h*(n) for all
nodes) then the heuristic search algorithm will be guaranteed
to find an optimal path to a goal, if one exists. => Admissible

Recall:
A search is admissible if for any graph, it always terminates
in an optimal path from s to a goal node whenever a path
from s to a goal node exists.

11

Proof Steps:

1. Show that the algorithm terminates whenever a goal node
is accessible.

2. Show that it terminates by finding a goal node.
3. Show that it terminates with an optimal path to a goal node.

An Important Result:
At anytime before A* terminates, there exists on open a node
n’ that is on an optimal path from S to a goal node with f(n’)
<= f*(S)

Another Important Result:
For any node n selected for expansion by heuristic search,

f(n)<=f*(S)

12

Comparing HS Algorithms

Let us assume we have two versions of H. search, one with
f1(n) = g1(n) + h1(n), and one with f2(n) = g2(n) + h2(n).

Now assume that h1 and h2 are both lower bounds on h*, we
say that HS2 is more informed than HS1, if for all non-goal
nodes h2(n) > h1(n).

⇒You can show that if the implicit graph is searched by both
algorithms, then at termination if node n was expanded by
HS2, it was also expanded by HS1. Thus HS1 always
expands as many or more nodes than HS2.

