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Heuristic Search:
The problem of local maxima arises because Hill-Climbing 
makes irrevocable decisions at each point in search space.

A search that uses one or more items of domain-specific 
knowledge to traverse state-space is called heuristic search. A 
Heuristic is a rule of thumb, and may not be guaranteed to 
succeed, but it is useful in most cases.

Heuristic search works the same way as hill-climbing except 
the next node to be expanded is selected among all possible 
nodes, not just the successors of the current state.
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An Algorithm for Heuristic Search:

1. Create a search graph G, consisting solely of the start node S. Put S on a 
list called open.

2. Create a list called closed, which is initially empty.
3. Loop: If open is empty, exit with fail.
4. Select the first node from open, remove it from open and put it on 

closed. Call this node n.
5. If success(n) = true, then exit with success (to find the solution trace 

back from n to s.)
6. Expand node n, generating the set, M, of its successors, and put them in 

G as successors of n.
7. Establish a pointer to n from those members of M which are not already 

in G (that is not already in open or closed). Add these members to 
open. For those members of M which are on closed and their children, 
determine if their back pointers should be changed, and if so change.

8. Reorder the list open according to heuristic merit of each element.
9. Go to Loop.
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Evaluation Functions

We use the function f(n) to evaluate the promise of node n. 
f(n) must be the estimate of the cost of a minimal cost path from 
the start node to a goal node constrained to go through node n. f is 
then used to order the nodes in open in step 8 of the previous 
algorithm.
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Designing Optimal Evaluation Functions:
Let K(ni, nj) be the actual cost of a minimal cost path between two 
arbitrary nodes ni and nj. Then for a particular goal node tn, K(n, ti) gives 
the minimal cost path from n to that goal node.

Let
h*(n) = min K(n, ti)

thus h*(n) is an optimal path cost from n to a goal.

Similarly
g*(n) = K(s, n)

cost from start node to node n.

then 
f*(n) = g*(n) + h*(n)

will be an evaluation function which at any node n gives us the cost of an 
optimal path from s to a goal node constrained to go through n.
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To design an evaluation function, develop one which looks like 
f(n) = g(n) + h(n) 

and estimates the components of f* well.

An obvious choice of estimate for g*(n):

g(n) = Σ arc-costs while tracing from n to s on the best path 
found so far.

=> g(n) >= g*(n)

Question:
For what value of f(n) will we produce breadth-first search?
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Claim:
If h is a lower bound on h* (that is, if h(n) =< h*(n) for all 
nodes) then the heuristic search algorithm will be guaranteed 
to find an optimal path to a goal, if one exists. => Admissible

Recall:
A search is admissible if for any graph, it always terminates 
in an optimal path from s to a goal node whenever a path 
from s to a goal node exists.
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Proof Steps:

1. Show that the algorithm terminates whenever a goal node 
is accessible.

2. Show that it terminates by finding a goal node.
3. Show that it terminates with an optimal path to a goal node.

An Important Result:
At anytime before A* terminates, there exists on open a node 
n’ that is on an optimal path from S to a goal node with f(n’) 
<= f*(S)

Another Important Result:
For any node n selected for expansion by heuristic search, 

f(n)<=f*(S)
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Comparing HS Algorithms

Let us assume we have two versions of H. search, one with 
f1(n) =  g1(n) + h1(n), and one with f2(n) =  g2(n) + h2(n).

Now assume that h1 and h2 are both lower bounds on h*, we 
say that HS2 is more informed than HS1, if for all non-goal 
nodes h2(n) > h1(n).

⇒You can show that if the implicit graph is searched by both 
algorithms, then at termination if node n was expanded by 
HS2, it was also expanded by HS1. Thus HS1 always 
expands as many or more nodes than HS2.


