
1

Search is concerned with
which branches we should
follow and in what order.

B

C

A

B

C

A

Init-State Goal-State

2

General Problem Solving

Many kinds of problems can be formulated as search problems in terms of
three key ingredients

• A Starting State
• A Termination Test
• A set of operations that can be applied to change the current state of

the problem

This is called state-space search.

3

Consider the following problem. (Missionaries and Cannibals)

There are three missionaries, three cannibals, a boat and a river.

Left Right
MMM

B
C C C

We want to transport everyone to the right side of the river, but the boat
can take only two people at a time (at least one person must bring the boat
back). In addition, if cannibals outnumber missionaries at either side, then
they kill the missionaries.

How can a computer solve the problem?

4

Choose a state representation:

L R

Initial State:

MMMCCCB

Termination Criteria:

BMMMCCC

Legal Operations: C C
CC CC

MM MM
M M

MC MC

5

6

Think of state space search as a graph in which the states are
nodes and the operations are arcs. The key is that the space is
generated as you go, not pre-enumerated.

Question:
What is the state-space for a chess game?
What is the first node?
What are all the arcs connecting to this node?

7

Solutions for State-Space Search

I. Generate-and-Test:
The simplest form of state-space search is generate-and-test.
The following algorithm summarizes the method:

1. Generate a possible solution, in the form of a state.
Ex. A new board position in chess

2. Test the success condition to see if this is a solution.

3. If the current state is a solution, then quit, else go back to
step 1.

8

II. Depth-First Search:
At any given node N, consider the children of N before
considering its siblings.

Algorithm:
Depth_FS(success(), current, pending)

if success(current) = true, then done
else pending = expand(current) +

append old pending to end of pending
if pending = () them failed
else Depth_FS(success(), first(pending), rest(pending))

Question:
How does depth-first search work for the missionaries and
the cannibals?

9

MMMC BCC

MMM BCCC

MMMCCB C

MCCC MMB MMCC MCB

MMMCCCB

CCCB MMM

CC BMMMC

MMCCB MC

MC BMMCC

MMMCB CC

BCCCMMM

CCB CMMM

C BCCMMM

C

C

C

C

C

CC

C

C

C

C

C

C

CC

CC

CC

CC

CC

MC

MC

MC

MC

MM

MM

MM

Start Node

Goal

CC

10

III. Breadth-First search:
At any node N, consider N’s siblings before considering its
children. Breadth-first search goes through the state space
layer by layer.

Question:
Write the general algorithm for breadth-first search.

Algorithm for Breadth-First search:
Breadth_FS(success(), current, pending)

if success(current) = true, then done
else pending = pending + expand(current) and

append to end of pending
if pending = () then failed
else Breadth_FS(success(), first(pending), rest(pending))

11

Admissibility:
A method which finds the shortest (least cost) solution, if one
exists, is called admissible.

Question:
Which one of Generate-and-Test, depth-first or breadth-first
search methods is admissible?

Question:
How does the search space (breadth-first) look like for the
missionaries and the cannibals?

12

Breadth First Search

MMMCCCB

MMCC MCBMMMCC CB MMMC CCB

MMMCCB C

MMMCCCBMMMCCCB

MMCCCB MMMMCCB CMMMCCCB

C

C C C

CC

CC

MC

MC

M

M

13

The main problem with the above exhaustive search methods:
Combinatorial Explosion.
(The number of nodes grows exponentially.)

14

Hill Climbing
This involves giving the program an evaluation function
which it can apply to the current state of the problem to
obtain a rough estimate of how well things are going.

An algorithm for hill-climbing:
1. Generate a possible solution (same as step 1 of Generate-

and-test).
2. Apply possible operation to this point in state-space that

generates a new set of possible solutions.
3. If any state is a solution (in this set), then quit, else take the

best state from the set, and make it the current state.

15

A Search Tree using an
Evaluation Function

16

Problems with Hill-Climbing:

1. Your evaluation function may not be a faithful estimate of
the goodness of the current state of the problem.
Ex: In chess, I may have more pieces than you may have,
but you may have a better board position. Thus evaluation
function based on pieces may not work well.

2. Local Minima: The evaluation function may take us to a
local minima, while the solution may require us to go
down, and find the goal on a lower point.

