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General Problem Solving

Many kinds of problems can be formulated as search problems in terms of 
three key ingredients

• A Starting State
• A Termination Test 
• A set of operations that can be applied to change the current state of 

the problem

This is called state-space search.



3

Consider the following problem. (Missionaries and Cannibals)

There are three missionaries, three cannibals, a boat and a river.

Left Right
MMM

B
C C C

We want to transport everyone to the right side of the river, but the boat 
can take only two people at a time (at least one person must bring the boat 
back). In addition, if cannibals outnumber missionaries at either side, then 
they kill the missionaries.

How can a computer solve the problem?
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Choose a state representation:

L R

Initial State:

MMMCCCB

Termination Criteria:

BMMMCCC

Legal Operations: C C
CC CC

MM MM
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Think of state space search as a graph in which the states are 
nodes and the operations are arcs. The key is that the space is 
generated as you go, not pre-enumerated.

Question: 
What is the state-space for a chess game?
What is the first node?
What are all the arcs connecting to this node?
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Solutions for State-Space Search

I. Generate-and-Test:
The simplest form of state-space search is generate-and-test. 
The following algorithm summarizes the method:

1. Generate a possible solution, in the form of a state. 
Ex. A new board position in chess

2. Test the success condition to see if this is a solution.

3. If the current state is a solution, then quit, else go back to 
step 1.
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II. Depth-First Search:
At any given node N, consider the children of N before 
considering its siblings.

Algorithm:
Depth_FS(success( ), current, pending)

if success(current) = true, then done
else pending = expand(current) + 

append old pending to end of pending
if pending = ( )  them failed
else Depth_FS(success( ), first(pending), rest(pending))

Question:
How does depth-first search work for the missionaries and 
the cannibals?
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III. Breadth-First search:
At any node N, consider N’s siblings before considering its 
children. Breadth-first search goes through the state space 
layer by layer.

Question:
Write the general algorithm for breadth-first search.

Algorithm for Breadth-First search:
Breadth_FS(success( ), current, pending)

if success(current) = true, then done
else pending = pending + expand(current) and

append to end of pending
if pending = ( ) then failed
else Breadth_FS(success( ), first(pending), rest(pending))
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Admissibility:
A method which finds the shortest (least cost) solution, if one 
exists, is called admissible.

Question:
Which one of Generate-and-Test, depth-first or breadth-first 
search methods is admissible?

Question:
How does the search space (breadth-first) look like for the 
missionaries and the cannibals?
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Breadth First Search
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The main problem with the above exhaustive search methods: 
Combinatorial Explosion. 
(The number of nodes grows exponentially.)
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Hill Climbing
This involves giving the program an evaluation function 
which it can apply to the current state of the problem to 
obtain a rough estimate of how well things are going. 

An algorithm for hill-climbing:
1. Generate a possible solution (same as step 1 of Generate-

and-test).
2. Apply possible operation to this point in state-space that 

generates a new set of possible solutions.
3. If any state is a solution (in this set), then quit, else take the 

best state from the set, and make it the current state.
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A Search Tree using an 
Evaluation Function
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Problems with Hill-Climbing:

1. Your evaluation function may not be a faithful estimate of 
the goodness of the current state of the problem.
Ex: In chess, I may have more pieces than you may have, 
but you may have a better board position. Thus evaluation 
function based on pieces may not work well.

2. Local Minima: The evaluation function may take us to a 
local minima, while the solution may require us to go 
down, and find the goal on a lower point.


