Ex2:
S1 $=\{\mathrm{A} / ? \mathrm{x}, \mathrm{B} / ? \mathrm{y}, \mathrm{C} / ? \mathrm{w}, \mathrm{D} / ? \mathrm{z}\}$
$\mathrm{S} 2=\{\mathrm{g}(? \mathrm{x}, ? \mathrm{y}) / ? \mathrm{z}\}$
S1S2 $=\{A / ? x, B / ? y, C / ? w, D / ? z\}$

Change the order of the substitutions in the previous example.
$\mathrm{S} 2 \mathrm{~S} 1=\{\mathrm{A} /$? $\mathrm{x}, \mathrm{B} /$? $\mathrm{y}, \mathrm{C} /$?w, $\mathrm{g}(\mathrm{A}, \mathrm{B}) / ? \mathrm{z}\}$
S1S2 \neq S2S 1

Verifying Consistency of Substitutions

To determine consistency, create two sets, T, V. Put all terms for all involved substitutions in T , and all variables for all involved substitutions in V. Then propagate values of the variables. If any variable has to take more than one constant value, then substitutions are inconsistent.

Ex: We have the following substitutions:

$$
\begin{aligned}
& \mathrm{S} 1=\{\mathrm{A} / ? \mathrm{x}, \mathrm{~A} / ? \mathrm{y}\} \\
& \mathrm{S} 2=\{\mathrm{A} / ? \mathrm{z} . ? \mathrm{z} / ? \mathrm{x}\}
\end{aligned}
$$

$T=\{\mathrm{A}$			A	Consistent
	A	A	P2	
\downarrow	\downarrow			
$V=\{? \mathrm{x}$? y	?z	Px	
			A	

Using $\mathrm{B} /$?z in S 2 :

How do we find substitutions?

$$
\left.\begin{array}{c}
\mathrm{W} 1(? \mathrm{x}) \Rightarrow \mathrm{W} 2(? \mathrm{x}) \\
\mathrm{W} 1(\mathrm{~A})
\end{array}\right\} \Rightarrow \mathrm{W} 2(\mathrm{~A})
$$

Use the recursive Unify procedure for unifying formulas (wffs) and finding substitutions.

Recursive Procedure UNIFY(E1, E2)
1 if either E1 or E2 is an atom (that is, a predicate symbol, a function symbol, a constant symbol, a negation symbol or a variable), interchange the arguments E1 and E2 (is necessary) so that E1 is an atom, and do:

2 begin
3
4
5
6
7
8
begin
if E 1 occurs in E 2 , return FAIL return $\{\mathrm{E} 2 / \mathrm{E} 1\}$
end
if E 2 is a variable, return $\{\mathrm{E} 1 / \mathrm{E} 2\}$

11
1 end
return FAIL contd...
...contd
12 F1 <- the first element of $\mathrm{E} 1, \mathrm{~T} 1<-$ the rest of E 1
$13 \mathrm{~F} 2<-$ the first element of E2, T2 <- the rest of E2
14 Z1 <- UNIFY(F1,F2)
15 if $\mathrm{Z} 1=\mathrm{FAIL}$, return FAIL
16 G1 <- result of applying Z1 to T1
17 G2 <- result of applying Z1 to T2
18 Z2 <- UNIFY(G1, G2)
19 if $\mathrm{Z} 2=\mathrm{FAIL}$, return FAIL
20 return the composition of Z 1 and Z 2

Ex: $\{P[A, ? x, f(? y)], P[? y, B, f(? z)]\}$
First convert everything into lists.
$\mathrm{E} 1=(\mathrm{PA} ? \mathrm{x}(\mathrm{f} ? \mathrm{y}))$
$\mathrm{E} 2=(\mathrm{P}$? y B (f ? z$)$)
$\mathrm{F} 1=\mathrm{P} \quad \mathrm{T} 1=(\mathrm{A} ? \mathrm{x}(\mathrm{f} ? \mathrm{y}))$
$\mathrm{F} 2=\mathrm{P} \quad \mathrm{T} 2=($? y B (f ? z$))$
Z1 $\leftarrow \operatorname{UNIFY}(\mathrm{F} 1, \mathrm{~F} 2) \rightarrow$ return NIL

$$
\begin{aligned}
& \mathrm{G} 1=\mathrm{T} 1=(\mathrm{A} ? \mathrm{x}(\mathrm{f} ? \mathrm{y})) \\
& \mathrm{G} 2=\mathrm{T} 2=(? \mathrm{y} \text { B }(\mathrm{f} ? \mathrm{z}))
\end{aligned}
$$

$$
\mathrm{Z} 2 \leftarrow \operatorname{UNIFY}((\mathrm{~A} ? \mathrm{x}(\mathrm{f} ? \mathrm{y}))(? \mathrm{y} \text { B (f ?z) }))
$$

E1 E2
$\mathrm{F} 1=\mathrm{A}$

T1 = (?x (f ?y))

$$
\mathrm{F} 2=? \mathrm{y}
$$

$$
\text { T2 = (B (f ? } \mathrm{z}))
$$

$\mathrm{Z} 1 \leftarrow \mathrm{UNIFY}(\mathrm{A}, ~ ? \mathrm{y}) \rightarrow$ return $(\mathrm{A} /$? y$)$
F1 F2

$$
\begin{aligned}
& \mathrm{G} 1=(? \mathrm{x}(\mathrm{f} A)) \\
& \mathrm{G} 2=(\mathrm{B}(\mathrm{f} ? \mathrm{z}))
\end{aligned}
$$

$\mathrm{Z} 2 \leftarrow \operatorname{UNIFY}((? \mathrm{x}(\mathrm{f} \mathrm{A}))(\mathrm{B}(\mathrm{f} ? \mathrm{z})))$ E1 E2
$\mathrm{F} 1=$? $\mathrm{x} \quad \mathrm{T} 1=((\mathrm{f} \mathrm{A}))$
$\mathrm{F} 2=\mathrm{B} \quad \mathrm{T} 2=((\mathrm{f} ? \mathrm{z}))$
$\mathrm{Z} 1 \leftarrow \mathrm{UNIFY}($? x B) \rightarrow return (B/?x)
$\mathrm{Z} 2 \leftarrow \operatorname{UNIFY}(((\mathrm{f} A))((\mathrm{f}$?z) $))$
$\mathrm{Z} 2 \leftarrow \operatorname{UNIFY}((\mathrm{~A})(? \mathrm{z}))$
$\mathrm{F} 1=\mathrm{A}$
$\mathrm{T} 1=()$
$\mathrm{F} 2=$? z
$\mathrm{T} 2=()$
$\mathrm{Z} 1 \leftarrow \operatorname{UNIFY}(\mathrm{~A} ? \mathrm{z}) \rightarrow$ return $(\mathrm{A} / ? \mathrm{z})$

Rule Systems: Simplest Knowledge Systems

Forward Chaining: match fact expressions with antecedents, generate new facts.

Backward Chaining: match goal or subgoal expressions with consequents, generate new subgoals.
procedure Forward-Chain ($K B, p$)
if there is a sentence in $K B$ that is a renaming of p then
return
Add p to $K B$
for each in $K B$ such that for some I,
UNIFY $\left(p_{i}, p\right)=\alpha l$ succeeds do
FIND-AND-INFER ($\left.K B,\left[p_{i}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n}\right], q, \theta\right)$
end
procedure FIND-AND-INFER (KB, premises, conclusions, θ)
if premises $=[$] then
FORWARD-CHAIN (KB, SUBST (θ, conclusion))
else for each p^{\prime} in KB such that UNIFY ($p^{\prime}, \operatorname{SUBST}(\theta$,
$\operatorname{FIRST}($ premises $)))=\theta_{2}$ do
FIND-AND-INFER (KB, REST (premises), conclusion,
$\left.\operatorname{COMPOSER}\left(\theta, \theta_{2}\right)\right)$
end

Figure - The forward-chaining inference algorithm. It adds to $K B$ all the sentences that can be inferred from the sentence p. If p is already in $K B$, it does nothing. If p is new, consider each implication that has a premise that matches p. For each such implication, if all the remaining premises are in $K B$, then infer the conclusion. If the premises can be matched several ways, then infer each corresponding conclusion. The substitution of θ keeps track of the way things match.

Review and Exercises

- The following expressions are given:

Manager(PURCHASING-DEPT, JOHN-JONES)
 Works-in(PURCHASING-DEPT, JOE-SMITH)

We also have the following production:

$$
\begin{aligned}
& {[\text { Works }-\mathrm{in}(? \mathrm{x}, ? \mathrm{y}) \wedge \text { Manager }(? \mathrm{x}, ? \mathrm{z})]} \\
& \Rightarrow \text { Boss }-\mathrm{of}(? \mathrm{y}, ? \mathrm{z})
\end{aligned}
$$

a) Using these expressions, show the forward inference steps which show that JOHN-JONES is the boss of JOE-SMITH.
b) Write a goal for finding the boss of JOE-SMITH. Using the above expressions, by setting up subgoals through backward inference steps and matching show JOHN-JONES is his boss.

1a)
$\mathrm{W}_{\text {f1 }}$ Manager(PURCHASING-DEPT, JOHN-JONES) $\} \mathrm{F}$
$\mathrm{W}_{\mathrm{f} 2}$ Works-in(PURCHASING-DEPT, JOE-SMITH)

Add to database W's
Boss-of (?y, ?z) S =
$\mathrm{W}_{\mathrm{f} 3} \quad$ Boss-of(JOE-SMITH, JOHN-JONES)

1b)
goal: Boss-of(JOE-SMITH, ?t)
S2 $=\{$ JOE-SMITH $/ ? \mathrm{y}, ? \mathrm{t} / ? \mathrm{z}\}$

New subgoals:
$\left\{\begin{array}{l}\text { Works-in(?x, ?y) S2 } \\ \text { Manager(?x, ?z) S2 }\end{array}\right.$
$\left\{\begin{array}{l}\text { Works-in(?x, JOE-SMITH) } \operatorname{sg} 1 \\ \text { Manager(?x, ?t) }\end{array}\right.$

Match with facts in database:
S3 $=\{$ PURCHASING-DEPT/?x $\}$
Works-in(PURCHASING-DEPT, JOE-SMITH)
$\operatorname{sg} 1 \mathrm{~S} 3=\mathrm{W}_{\mathrm{f} 2}$

S4 = \{PURCHASING-DEPT/?x, JOHN-JONES /?t \}
$\operatorname{sg} 2 \mathrm{~S} 4=\mathrm{W}_{\mathrm{f} 1}$

Compose S2, S3, S4 and check for consistency.

T $=\{$ JOE-SMITH \quad ?t PURCHASING-DEPT...$*$
$\mathrm{V}=\left\{\begin{array}{llll}\text { ? } & \text { ?z }\end{array}\right.$
*... PURCHASING-DEPT JOHN-JONES $\}$
**... ?x ?t \}

Compose $\mathrm{S} 2, \mathrm{~S} 3, \mathrm{~S} 4$ and check for consistency. JOHN-JONES

T $=$ \{JOE-SMITH ج. PURCHASING-DEPT ...*

JOHN-JONES

Consistent substitutions Answer: John-Jones/?t

