
1

Ex2:

S1 = {A/?x, B/?y, C/?w, D/?z}

S2 = {g(?x, ?y)/?z}

S1S2 = {A/?x, B/?y, C/?w, D/?z}

Change the order of the substitutions in the previous

example.

S2S1 = { A/?x, B/?y, C/?w, g(A, B)/?z}
S2S1S1S2≠
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Verifying Consistency of Substitutions

To determine consistency, create two sets, T, V. Put all terms
for all involved substitutions in T, and all variables for all
involved substitutions in V. Then propagate values of the
variables. If any variable has to take more than one
constant value, then substitutions are inconsistent.
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Ex: We have the following substitutions:

S1 = {A/?x, A/?y}
S2 = {A/?z. ?z/?x}

  A
T = { A A A  ?z}

Consistent

V = {?x ?y ?z ?x}
         A
Using B/?z in S2:
         B

T = { A A B ?z}
Inconsistent

V = {?x ?y ?z ?x}
         A
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How do we find substitutions?

Use the recursive Unify procedure for unifying formulas

(wffs) and finding substitutions.

W1(A)

(?x) W2  (?x) W1 ⇒ (A) W2 ⇒





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Recursive Procedure UNIFY (E1, E2)

1 if  either E1 or E2 is an atom (that is, a predicate symbol, a function
symbol, a constant symbol, a negation symbol or a variable),
interchange the arguments E1 and E2 (is necessary) so that E1 is an
atom, and do:

2 begin

3 if  E1 and E2 are identical, return  NIL

4 if  E1 is a variable, do:

5 begin

6 if  E1 occurs in E2, return  FAIL

7 return  {E2/E1}

8 end

9 if  E2 is a variable, return  {E1/E2}

10 return FAIL

11 end contd…
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…contd

12 F1 <- the first element of E1, T1 <- the rest of E1

13 F2 <- the first element of E2, T2 <- the rest of E2

14 Z1 <- UNIFY (F1,F2)

15 if  Z1 = FAIL, return  FAIL

16 G1 <- result of applying Z1 to T1

17 G2 <- result of applying Z1 to T2

18 Z2 <- UNIFY (G1, G2)

19 if  Z2 = FAIL, return  FAIL

20 return  the composition of Z1 and Z2
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Ex: {P[A, ?x, f(?y)], P[?y, B, f(?z)]}

First convert everything into lists.

E1 = (P A ?x (f ?y))
E2 = (P ?y B (f ?z))

F1 = P T1 = (A ?x (f ?y))
F2 = P T2 = (?y B (f ?z))

Z1 Å UNIFY(F1, F2) Æ return NIL



8

G1 = T1 = (A ?x (f ?y))
G2 = T2 = (?y B (f ?z))

Z2 Å UNIFY ((A ?x (f ?y)) (?y B (f ?z)))
        E1            E2

F1 = A T1 = (?x (f ?y))
F2 = ?y T2 = (B (f ?z))

Z1 Å UNIFY (A, ?y) Æreturn (A/?y)
           F1 F2

G1 = (?x (f A))
G2 = (B (f ?z))
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Z2 Å UNIFY ((?x (f A)) (B (f ?z)))
   E1    E2

F1 = ?x T1 = ((f A))
F2 = B T2 = ((f ?z))

Z1 Å UNIFY(?x B) Æ return (B/?x)

Z2 Å UNIFY(((f A)) ((f ?z)))
:
Z2 Å UNIFY((A) (?z))

F1 = A T1 = ( )
F2 = ?z T2 = ( )

Z1 Å UNIFY (A ?z) Æ return (A/?z)
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Compose ((A/?z) (B/?x))

((A/?z, B/?x))

Compose ((A/?y) (A/?z, B/?x))

((A/?y, A/?z, B/?x))

Compose (NIL (A/?y, A/?z, B/?x))

((A/?y, A/?z, B/?x))
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Rule Systems: Simplest Knowledge Systems

W1(v1, v2…) => W1'(…)

W2(…) => W2'(…)

Rules :

:     W1'(…) Si

Wn(…) => Wn'(…)

       newly

 Si = {C1/v1, C2/v2,…}                   generated

       fact

Wf1 (C1, C2, …)

Facts Wf2 (C1, C2, …)

:
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Forward Chaining: match fact expressions with antecedents,
       generate new facts.

Backward Chaining: match goal or subgoal expressions with
          consequents, generate new subgoals.
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procedure Forward-Chain (KB, p)

if  there is a sentence in KB that is a renaming of p  then
return
Add  p  to  KB
for each  in KB such that for some I,
UNIFY (pi, p) = αι succeeds do

FIND-AND-INFER (KB, [pi, …, pi-1, pi+1, …, pn], q, θ  )
end

procedure FIND-AND-INFER (KB, premises,
conclusions,θ  )

if  premises = [ ]  then
    FORWARD-CHAIN (KB, SUBST (θ, conclusion))
else for each p' in KB such that UNIFY (p', SUBST(θ ,
FIRST (premises))) = θ 2 do

FIND-AND-INFER (KB, REST (premises), conclusion,
COMPOSER (θ, θ2))

end
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Figure - The forward-chaining inference algorithm. It adds
to KB all the sentences that can be inferred from the sentence
p. If p is already in KB, it does nothing. If p is new, consider
each implication that has a premise that matches p. For each
such implication, if all the remaining premises are in KB,
then infer the conclusion. If the premises can be matched
several ways, then infer each corresponding conclusion. The
substitution of θ keeps track of the way things match.
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Review and Exercises

• The following expressions are given:

Manager(PURCHASING-DEPT, JOHN-JONES)

Works-in(PURCHASING-DEPT, JOE-SMITH)

We also have the following production:

a) Using these expressions, show the forward inference steps which
show that JOHN-JONES is the boss of JOE-SMITH.

b) Write a goal for finding the boss of JOE-SMITH. Using the above
expressions, by setting up subgoals through backward inference steps
and matching show JOHN-JONES is his boss.

?z) of(?y,-Boss

?z)] ,Manager(?x?y) in(?x,-[Works

⇒
∧
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1a)
Wf1  Manager(PURCHASING-DEPT, JOHN-JONES)
Wf2  Works-in(PURCHASING-DEPT, JOE-SMITH)

WR1

            W’
S = {PURCHASING-DEPT/?x Result

   JOE-SMITH/?y, from
    JOHN-JONES /?z} Alg. Unify

Add to database W’s
Boss-of (?y, ?z) S  =

Wf3 Boss-of(JOE-SMITH, JOHN-JONES)

goal

?z) of(?y,-Boss

?z)] ,Manager(?x?y) in(?x,-[Works

⇒
∧

F

R
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1b)

goal: Boss-of(JOE-SMITH, ?t)

S2 = {JOE-SMITH /?y, ?t /?z}

New subgoals:

Works-in(?x, ?y) S2

Manager(?x, ?z) S2

Works-in(?x, JOE-SMITH) sg1

Manager(?x, ?t)   sg2
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Match with facts in database:

S3 = {PURCHASING-DEPT/?x}
Works-in(PURCHASING-DEPT, JOE-SMITH)

sg1 S3 = Wf2

S4 = {PURCHASING-DEPT/?x, JOHN-JONES /?t}

sg2 S4 = Wf1
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Compose S2, S3, S4 and check for consistency.

T = {JOE-SMITH     ?t     PURCHASING-DEPT …*

V = {       ?y              ?z                    ?x                   …**

*… PURCHASING –DEPT     JOHN-JONES}

**…                     ?x                             ?t            }
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Compose S2, S3, S4 and check for consistency.
                          JOHN-JONES
T = {JOE-SMITH     ?t     PURCHASING-DEPT …*

V = {       ?y              ?z                    ?x                   …**
      JOE-SMITH                         PURCHASING-DEPT

            JOHN-JONES

*… PURCHASING –DEPT     JOHN-JONES}

**…                     ?x                             ?t            }
    PURCHASING-DEPT

Consistent substitutions Answer: John-Jones/?t


