Lec#20. Ratioed logic
and transmission gate.

Today we talk about
1. Ratioed logic

2. transmission gate

3. HW#3. (if we have time)

1. Ratioed logic:

a. Why? Attempt to reduce the number of transistors required to implement a given function. Tradeoff: reduced robustness, extra power dissipation

b. How?

\[
\begin{align*}
\text{PDN} & \quad \text{PDN} \\
\text{GND} & \quad \text{GND} \\
\text{VDD} & \quad \text{VDD} \\
\text{out} & \quad \text{out}
\end{align*}
\]

\[2N \text{ transistors} \Rightarrow \frac{N+1}{N+1} \text{ transistors.}\]

Let us take a close look at...
We have static power consumption and reduced noise margin!!

Let us compute the dc-transfer VTC for pseudo-NMOS (only one pmos, everything is NMOS).

\[V_{OL} \approx \frac{W_p}{N} \times V_{SAT} \]

NMOS in linear mode
PMOS in saturated (a saturated)

\[V_{OL} \approx \frac{W_p}{W_n} \times V_{SAT} \]

\[\frac{W}{L_p} = 4 \rightarrow V_{OL} = 0.66 \, V \]
\[\frac{W}{L_p} = 0.25 \rightarrow V_{OL} = 0.03 \, V \]

Good!

but you have static power consumption!!
Differential Cascode Voltage Switch Logic (DCVSL)

PDN1 Conducts PDN2 off
PDN1 off PDN2 Conducts

When PDN1 conducts,
- OUT low,
- NOT high impedance.

Since M2 off, PDN2 off
(-float),
possible to discharge OUT
all the way to GND.

Because: when M2 off, OUT discharge
to VDD - (Vth), it turns on
M2, M1 charges OUT, turns
off M1, M3 off, let "OUT"
to discharge to "GND".
design a gate with DCVSL

\[f = \overline{AB} \]

\[\overline{\text{out}} = \overline{AB} \]

\[\overline{M_1} \quad \overline{M_2} \quad \overline{M_3} \quad M_4 \]

\[\overline{V_{out}} \quad \overline{V_{out}} \]

\[V_{in} \quad V_{out} \]

\[V_{in} \quad V_{out} \]
2. Transmission gate (or pass-transistor logic)

\[F = A \bar{B} \]

- If \(B = 1 \), \(M_1 \) on.
- If \(B = 0 \), \(M_2 \) on, \(M_1 \) off.

We know already that nmos "good" to pass '0' but "bad" to "pass '1'.

\[V_{DD} - V_{Th} \]

\[V_x = V_{DD} - (V_{Th} + \gamma(\sqrt{2V_x + V_s} - \sqrt{2V_x}) \]

trick: Don't connect pass-transistor together.

\[V_y = V_{DD} - V_{Th} - V_{Th} \]

bad choice

OK choice!
How to build Robust and Efficient Pass-transistor gates?

Strategy 1: Level Restoration (Footer or header)

- How to size M_r:
 1. First fix size of M_1, M_2, M_3.
 Use hyspice to modulate M_r.
 2. M_r size always small.

Strategy 2: Transmission Gate logic

- If $C = 1$, $B = A$. Strong pass for both "0" and "1".
- If $C = 0$, cutoff.

$\frac{R_p}{R_n}$ during $L \rightarrow H$ for output goes through different modes.

If V_b is low V_{MOS} sat, linear, eff. PMOS sat.

$R_p = \frac{V_{out} - V_{dd}}{I_{op}} = \frac{V_{out} - V_{dd}}{K_p \left((-V_{dd} - V_{TP}) \left(V_{out} - V_{dd} \right) - \frac{(V_{out} - V_{dd})^2}{2} \right)}$

\[= \frac{1}{K_p (-V_{dd} - V_{TP})} \]
R_n changes.

![Graph showing R_p, R_n, and $R_n/|R_p|$ relationships.]

E_{more}