Lec#18 Design Complex SCCD gate

1. SCCD is input pattern dependent

- **Example**
 - When $A=0$ and $B=0$, charging C_L
 - When $A=1$ and $B=1$, discharging C_L

- **Pun strong**
 - $\frac{(W/L)_p}{(W/L)_N}$
 - Current ratio, V_{in} makes difference

- **Conditions**
 - $A=1$, $B=0$ → 1
 - $A=0$, $B=1$ → 1

- **Node i**

- $V_{GSm_1} = V_A - V_{os n_1}$
- $V_{GSm_2} = V_B$

- $V_{Th n_1} = V_{Tho} + \frac{V_i}{\sqrt{\frac{2(2p_n+1)}{12N}}} - \sqrt{\frac{2p_n}{12N}}$
 - V_i makes difference

- $V_{Th n_2} = V_{Tho}$

- So $V_{Th n_1} > V_{Th n_2}$
A = 1 \quad M_P^1 \text{ is off}
V_{at} \text{ for } M_{N_1} \text{ is always } V_{DD}

B = 1 \quad M_P^2 \text{ is off}

For propagation delay of Complementary CMOS gates, we can use first order switch model.

You can in fact use Elmore delay model.
Example:

\[C_1 : C_{d1} + C_{d2} + 2C_{gd1} + 2C_{gs2} \]
\[C_2 : C_{d2} + C_{d3} + 2C_{gd2} + 2C_{gs3} \]
\[C_3 : C_{d3} + C_{d4} + 2C_{gd3} + 2C_{gs4} \]
\[C_L : C_{d4} + 2C_{gd4} + C_{d5} + C_{d6} + C_{d7} + C_{d8} + 2C_{gd5} + 2C_{gd6} + 2C_{gd7} + 2C_{gd8} \]

How to size complex SCCD gates?

Sizing is only effective if the load is dominate by fan out.
Inverter:

\[t_p = t_{po} \left(1 + \frac{C_{ext}}{\gamma C_0} \right) = t_{po} (1 + \frac{f}{\gamma}) \]

extension to general complex gates.

\[t_p = t_{po} (p + g_f/\gamma) \]

- \(p \): ratio of intrinsic delay of complex gate and simple inverter.
- \(f \): effective fan out.
- \(g \): logic effort.
- \(\gamma = \frac{C_{ext}}{C_0} \)
logical effort: for a given load, complex gates have to work harder than an inverter to produce a similar response, or how much more input capacitance a gate represents to deliver the same output current as an inverter?

\[C_{g_{\text{p}}} = \frac{C_{\text{ox}} W L}{2} + 2 C_{\text{inv}} \]
\[C_{g_{\text{p}} p} = \frac{2}{3} C_{\text{ox}} W L + 2 C_{\text{inv}} \]

minimum-sized symmetrical inverter.

So \(C_{g_{\text{p}}} = 2 C_{g_{n}} \)
\(C_{g_{\text{inv}}} = C_{\text{unit}} \)

\(C_{g_{\text{total}}} = 3 C_{g_{n}} \)
\(C_{g} = 3 C_{\text{unit}} \)

\[g = \frac{C_{g_{\text{complex.gate}}}}{C_{g_{\text{inv}}}} \]

\[g_{\text{complex.gate}} = 4 C_{\text{unit}} \]

So \(g = \frac{4}{3} \)

\[g = ? \quad g = \frac{5}{3} \]
Extension to path, branch

\[R \propto \frac{1}{(z)} \]

\[R \text{ if } \text{w} \quad \text{or } R \text{ if } \text{w} \]

So, series connection case \(\rightarrow \) sizing factor.

Parallel connection case

path:

\[t_p = \sum_{j=1}^{N} t_{p_j} = t_{p0} \sum_{j=1}^{N} \left(p_j + \frac{f_j a_j}{2} \right) \]

\[G = \sum_{i=1}^{N} g_i \quad F = \frac{C_L}{C_g} \]

\[b = \frac{\text{Con-path} + \text{Off-path}}{\text{Con-path}} \]

\[B = \frac{N}{i} b \]

\[H = GFb \]