
LDPC Codes – a brief Tutorial

Bernhard M.J. Leiner, Stud.ID.: 53418L
bleiner@gmail.com

April 8, 2005

1 Introduction

Low-density parity-check (LDPC) codes are a class of linear block LDPC

codes. The name comes from the characteristic of their parity-check
matrix which contains only a few 1’s in comparison to the amount of
0’s. Their main advantage is that they provide a performance which
is very close to the capacity for a lot of different channels and linear
time complex algorithms for decoding. Furthermore are they suited
for implementations that make heavy use of parallelism.

They were first introduced by Gallager in his PhD thesis in 1960. Gallager,
1960But due to the computational effort in implementing coder and en-

coder for such codes and the introduction of Reed-Solomon codes,
they were mostly ignored until about ten years ago.

1.1 Representations for LDPC codes

Basically there are two different possibilities to represent LDPC codes.
Like all linear block codes they can be described via matrices. The
second possibility is a graphical representation.

Matrix Representation

Lets look at an example for a low-density parity-check matrix first.
The matrix defined in equation (1) is a parity check matrix with di-
mension n×m for a (8, 4) code.

We can now define two numbers describing these matrix. wr for
the number of 1’s in each row and wc for the columns. For a matrix to
be called low-density the two conditions wc � n and wr � m must

1



H =


0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

 (1)

c0 c1 c2 c3 c4 c5 c6 c7

f0 f3f1 f2

v nodes

c nodes

Figure 1: Tanner graph corresponding to the parity check matrix in
equation (1). The marked path c2 → f1 → c5 → f2 → c2 is an
example for a short cycle. Those should usually be avoided since they
are bad for decoding performance.

be satisfied. In order to do this, the parity check matrix should usually
be very large, so the example matrix can’t be really called low-density.

Graphical Representation

Tanner introduced an effective graphical representation for LDPC Tanner
graph, 1981codes. Not only provide these graphs a complete representation of the

code, they also help to describe the decoding algorithm as explained
later on in this tutorial.

Tanner graphs are bipartite graphs. That means that the nodes of
the graph are separated into two distinctive sets and edges are only
connecting nodes of two different types. The two types of nodes in
a Tanner graph are called variable nodes (v-nodes) and check nodes v-nodes

(c-nodes). c-nodes

Figure 1.1 is an example for such a Tanner graph and represents
the same code as the matrix in 1. The creation of such a graph is
rather straight forward. It consists of m check nodes (the number of
parity bits) and n variable nodes (the number of bits in a codeword).
Check node fi is connected to variable node cj if the element hij of
H is a 1.

2



1.2 Regular and irregular LDPC codes

A LDPC code is called regular if wc is constant for every column regular

and wr = wc · (n/m) is also constant for every row. The example
matrix from equation (1) is regular with wc = 2 and wr = 4. It’s also
possible to see the regularity of this code while looking at the graphical
representation. There is the same number of incoming edges for every
v-node and also for all the c-nodes.

If H is low density but the numbers of 1’s in each row or column
aren’t constant the code is called a irregular LDPC code. irregular

1.3 Constructing LDPC codes

Several different algorithms exists to construct suitable LDPC codes.
Gallager himself introduced one. Furthermore MacKay proposed one MacKay

to semi-randomly generate sparse parity check matrices. This is quite
interesting since it indicates that constructing good performing LDPC
codes is not a hard problem. In fact, completely randomly chosen
codes are good with a high probability. The problem that will arise,
is that the encoding complexity of such codes is usually rather high.

2 Performance & Complexity

Before describing decoding algorithms in section 3, I would like to
explain why all this effort is needed. The feature of LDPC codes to
perform near the Shannon limit1 of a channel exists only for large
block lengths. For example there have been simulations that perform
within 0.04 dB of the Shannon limit at a bit error rate of 10−6 with an Shannon limit

block length of 107. An interesting fact is that those high performance
codes are irregular.

The large block length results also in large parity-check and gen-
erator matrices. The complexity of multiplying a codeword with a
matrix depends on the amount of 1’s in the matrix. If we put the
sparse matrix H in the form [PT I] via Gaussian elimination the gen-
erator matrix G can be calculated as G = [I P]. The sub-matrix P
is generally not sparse so that the encoding complexity will be quite
high.

1Shannon proofed that reliable communication over an unreliable channel is
only possible with code rates above a certain limit – the channel capacity.

3



Since the complexity grows in O(n2) even sparse matrices don’t
result in a good performance if the block length gets very high. So iter-
ative decoding (and encoding) algorithms are used. Those algorithms
perform local calculations and pass those local results via messages.
This step is typically repeated several times.

The term ”local calculations” already indicates that a divide and
conquere strategy, which separates a complex problem into manage- divide and

conquereable sub-problems, is realized. A sparse parity check matrix now helps
this algorithms in several ways. First it helps to keep both the lo-
cal calculations simple and also reduces the complexity of combining
the sub-problems by reducing the number of needed messages to ex-
change all the information. Furthermore it was observed that iterative
decoding algorithms of sparse codes perform very close to the optimal
maximum likelihood decoder.

3 Decoding LDPC codes

The algorithm used to decode LDPC codes was discovered indepen-
dently several times and as a matter of fact comes under different
names. The most common ones are the belief propagation algorithm
, the message passing algorithm and the sum-product algorithm. BPA

MPA

SPA

In order to explain this algorithm, a very simple variant which works
with hard decision, will be introduced first. Later on the algorithm will
be extended to work with soft decision which generally leads to better
decoding results. Only binary symmetric channels will be considered.

3.1 Hard-decision decoding

The algorithm will be explained on the basis of the example code
already introduced in equation 1 and figure 1.1. An error free received
codeword would be e.g. c = [1 0 0 1 0 1 0 1]. Let’s suppose that we
have a BHC channel and the received the codeword with one error –
bit c1 flipped to 1.

1. In the first step all v-nodes ci send a ”message” to their (always ci → fj

2 in our example) c-nodes fj containing the bit they believe to
be the correct one for them. At this stage the only information
a v-node ci has, is the corresponding received i-th bit of c, yi.
That means for example, that c0 sends a message containing 1

to f1 and f3, node c1 sends messages containing y1 (1) to f0

and f1, and so on.

4



c-node received/sent
f0 received: c1 → 1 c3 → 1 c4 → 0 c7 → 1

sent: 0 → c1 0 → c3 1 → c4 0 → c7

f1 received: c0 → 1 c1 → 1 c2 → 0 c5 → 1

sent: 0 → c0 0 → c1 1 → c2 0 → c5

f2 received: c2 → 0 c5 → 1 c6 → 0 c7 → 1

sent: 0 → c2 1 → c5 0 → c6 1 → c7

f3 received: c0 → 1 c3 → 1 c4 → 0 c6 → 0

sent: 1 → c0 1 → c3 0 → c4 0 → c6

Table 1: overview over messages received and sent by the c-nodes in
step 2 of the message passing algorithm

2. In the second step every check nodes fj calculate a response to fj → ci

every connected variable node. The response message contains
the bit that fj believes to be the correct one for this v-node ci

assuming that the other v-nodes connected to fj are correct.
In other words: If you look at the example, every c-node fj is
connected to 4 v-nodes. So a c-node fj looks at the message re-
ceived from three v-nodes and calculates the bit that the fourth
v-node should have in order to fulfill the parity check equation.
Table 2 gives an overview about this step.

Important is, that this might also be the point at which the de-
coding algorithm terminates. This will be the case if all check
equations are fulfilled. We will later see that the whole algo-
rithm contains a loop, so an other possibility to stop would be
a threshold for the amount of loops.

3. Next phase: the v-nodes receive the messages from the check ci → fj

nodes and use this additional information to decide if their orig-
inally received bit is OK. A simple way to do this is a majority
vote. When coming back to our example that means, that each
v-node has three sources of information concerning its bit. The
original bit received and two suggestions from the check nodes.
Table 3 illustrates this step. Now the v-nodes can send another
message with their (hard) decision for the correct value to the
check nodes.

4. Go to step 2. loop

In our example, the second execution of step 2 would terminate the
decoding process since c1 has voted for 0 in the last step. This corrects

5



v-node yi received messages from check nodes decision
c0 1 f1 → 0 f3 → 1 1

c1 1 f0 → 0 f1 → 0 0

c2 0 f1 → 1 f2 → 0 0

c3 1 f0 → 0 f3 → 1 1

c4 0 f0 → 1 f3 → 0 0

c5 1 f1 → 0 f2 → 1 1

c6 0 f2 → 0 f3 → 0 0

c7 1 f0 → 1 f2 → 1 1

Table 2: Step 3 of the described decoding algorithm. The v-nodes
use the answer messages from the c-nodes to perform a majority vote
on the bit value.

the transmission error and all check equations are now satisfied.

3.2 Soft-decision decoding

The above description of hard-decision decoding was mainly for ed-
ucational purpose to get an overview about the idea. Soft-decision
decoding of LDPC codes, which is based on the concept of belief
propagation, yields in a better decoding performance and is therefore belief

propagationthe prefered method. The underlying idea is exactly the same as in
hard decision decoding. Before presenting the algorithm lets introduce
some notations:

• Pi = Pr(ci = 1|yi)

• qij is a message sent by the variable node ci to the check node
fj. Every message contains always the pair qij(0) and qij(1)

which stands for the amount of belief that yi is a ”0” or a ”1”.

• rji is a message sent by the check node fj to the variable node
ci. Again there is a rji(0) and rji(1) that indicates the (current)
amount of believe in that yi is a ”0” or a ”1”.

The step numbers in the following description correspond to the
hard decision case.

1. All variable nodes send their qij messages. Since no other ci → fj

information is avaiable at this step, qij(1) = Pi and qij(0) =

1 − Pi.

6



ci

fj
fj

ci

a) b)

rji(b)

rji(b)

qij(b)

yi

qij(b)

Figure 2: a) illustrates the calculation of rji(b) and b) qij(b)

2. The check nodes calculate their response messages rji:
2 fj → ci

rji(0) =
1

2
+

1

2

∏
i ′ ε Vj\i

(1 − 2qi ′j(1)) (3)

and
rji(1) = 1 − rji(0) (4)

So they calculate the probability that there is an even number
of 1’s amoung the variable nodes except ci (this is exactly what
Vj\i means). This propability is equal to the probability rji(0)

that ci is a 0. This step and the information used to calculate
the responses is illustrated in figure 2.

3. The variable nodes update their response messages to the check ci → fj

nodes. This is done according to the following equations,

qij(0) = Kij (1 − Pi)
∏

j ′ ε Ci\j

rj ′i(0) (5)

qij(1) = KijPi

∏
j ′ ε Ci\j

rj ′i(1) (6)

2Equation 3 uses the following result from Gallager: for a sequence of M
independent binary digits ai with an propability of pi for ai = 1, the probability
that the whole sequence contains an even number of 1’s is

1

2
+

1

2

M∏
i=1

(1 − 2pi) (2)

7



whereby the Konstants Kij are chosen in a way to ensure that
qij(0)+qij(1) = 1. Ci\j now means all check nodes except fj.
Again figure 2 illustrates the calculation in this step.

At this point the v-nodes also update their current estimation ĉi

of their variable ci. This is done by calculating the propabilities
for 0 and 1 and voting for the bigger one. The used equations

Qi(0) = Ki (1 − Pi)
∏
j ε Ci

rji(0) (7)

and
Qi(1) = KiPi

∏
j ε Ci

rji(1) (8)

are quite similar to the ones to compute qij(b) but now the
information from every c-node is used.

ĉi =

{
1 if Qi(1) > Qi(0),

0 else
(9)

If the current estimated codeword fufills now the parity check
equations the algorithm terminates. Otherwise termination is
ensured through a maximum number of iterations.

4. Go to step 2. loop

The explained soft decision decoding algorithm is a very simple
variant, suited for BSC channels and could be modified for perfor-
mance improvements. Beside performance issues there are nummeri-
cal stability problems due to the many multiplications of probabilities.
The results will come very close to zero for large block lenghts. To
prevent this, it is possible to change into the log-domain and doing log-domain

additions instead of multiplications. The result is a more stable algo-
rithm that even has performance advantages since additions are less
costly.

4 Encoding

The sharped eyed reader will have noticed that the above decoding
algorithm does in fact only error correction. This would be enough for
a traditional systematic block code since the code word would consist

8



of the message bits and some parity check bits. So far nowhere was
mentioned that it’s possible to directly see the original message bits
in a LDPC encoded message. Luckily it is.

Encoding LDPC codes is roughly done like that: Choose certain
variable nodes to place the message bits on. And in the second step
calculate the missing values of the other nodes. An obvious solution
for that would be to solve the parity check equations. This would
contain operations involving the whole parity-check matrix and the
complexity would be again quadratic in the block length. In practice
however, more clever methods are used to ensure that encoding can
be done in much shorter time. Those methods can use again the
spareness of the parity-check matrix or dictate a certain structure3 for
the Tanner graph.

5 Summary

Low-density-parity-check codes have been studied a lot in the last
years and huge progresses have been made in the understanding and
ability to design iterative coding systems. The iterative decoding ap-
proach is already used in turbo codes but the structure of LDPC codes
give even better results. In many cases they allow a higher code rate
and also a lower error floor rate. Furthermore they make it possible
to implement parallelizable decoders. The main disadvantes are that
encoders are somehow more complex and that the code lenght has to
be rather long to yield good results.

For more information – and there are a lot of things which haven’t
been mentioned in this tutorial – I can recommend the following web
sites as a start:

http://www.csee.wvu.edu/wcrl/ldpc.htm

A collection of links to sites about LDPC codes and a list of
papers about the topic.

http://www.inference.phy.cam.ac.uk/mackay/CodesFiles.html

The homepage of MacKay. Very intersting are the Pictorial
demonstration of iterative decoding

3It was already mentioned in section 1.3 that randomly generated LDPC codes
results in high encoding complexity.

9


