1. Which of the following FSMs implement a button synchronizer, converting each unique button press into a single cycle “1”, regardless of the time the button is actually pressed.

(a) ![Diagram](image1)
(b) ![Diagram](image2)
(c) ![Diagram](image3)
(d) ![Diagram](image4)

2. Create a state table for the following FSM. You can assume the state register is implemented with D flip-flops. You do NOT need to implement the combinational logic.

(a) ![Diagram](image5)
(b) ![Diagram](image6)
(c) ![Diagram](image7)
(d) ![Diagram](image8)

3. Convert the following Moore FSM to a Mealy FSM.

(a) ![Diagram](image9)

4. Convert the following Mealy FSM to a Moore FSM.

(a) ![Diagram](image10)
5. Implement a Mealy FSM that detects the input sequence pattern \(z = 1, 0, 1, 0 \). Whenever the input pattern is detected immediately output \(f = 1 \) (do not wait until the next clock cycle). You only need to show the FSM, you do not need to implement the architecture. **Hint:** What happens when you detect input \(z = 1, 0, 1, 0, 1, 0 \)?

6. Describe the FSM provided using the formal specification \(M = (X, Y, S, \delta, \lambda, s_0) \).

 ![FSM Diagram]

 Inputs: \(a, b \); **Outputs:** \(y \)

7. You want to design a laser surgery system where a surgeon activates the laser by pressing a button. The laser should then stay on for exactly 3 cycles, then turn off. The FSM below describes the three-cycles high laser timer controller. *(Same system from lecture 3, slide 4)*

 ![FSM Diagram]

 Inputs: \(b \) (bit); **Outputs:** \(x \) (bit)

 To model this FSM in Verilog we can use either a 2-process model or a 1-process model. Download the three-cycles high laser time code provided on the course page and simulate both FSMs using the Testbench provided.

 a) Do both the 1-process model and 2-process model accurately describe the functionality of the desired system?
 b) Is there any difference in output between the 1-process model and 2-process model? If so, why?

8. Derive a state table for the FSM provided. Assume the state register is implemented with \(T \) flip-flops and the state encodings for states \(A, B, C, \) and \(D \) are 00, 01, 10, and 11 respectively. A truth table for \(T \) flip-flops is provided.

 ![FSM Diagram]

 Inputs: \(a \) (bit); **Outputs:** \(y, z \) (bit)

 T flip-flop and corresponding truth table

<table>
<thead>
<tr>
<th>(T)</th>
<th>(Q)</th>
<th>(Q_{next})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>