Graphs

\[G = (V, E) \]

- \(V \) is a set of vertices (often called nodes)
- \(E \) is a set of edges between vertices

\[|V| = \text{number of vertices} \]
\[|E| = \text{number of edges} \]

Undirected graphs

Each edge specifies a connection between two vertices without any predecessor (source) / successor (sink) relationship.

- \(V = \{1, 2, 3, 4, 5\} \)
- \(E = \{ (1, 2), (1, 4), (2, 4), (2, 5), (2, 3), (3, 5), (4, 5) \} \)

\[|V| = 5 \]
\[|E| = 7 \]

Directed graphs

Each edge specifies a directed connection from one vertex (source) to another vertex (sink).

- \(V = \{1, 2, 3, 4, 5, 6\} \)
- \(E = \{ (1, 2), (1, 4), (2, 5), (3, 5), (3, 6), (4, 2), (5, 4), (6, 6) \} \)

\[|V| = 6 \]
\[|E| = 8 \]
Graph Representation

adjacency matrix (better for dense graphs)

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 & 1 \\
3 & 0 & 1 & 0 & 1 & 1 \\
4 & 0 & 1 & 0 & 1 & 0 \\
5 & 1 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

| v | x | \(|v| \) matrix
\[a_{ij} = \begin{cases}
1 & \text{if } (i,j) \in E \\
0 & \text{otherwise}
\end{cases}\]

adjacency list representation (preferred)

list (array) of vertices where each vertex contains a list (array) of vertices to which the vertex connects (i.e. edge)

\[
\begin{array}{c}
1 & 2 & 3 & 4 & 5 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
2 & 1 & 2 & 2 & 4 \\
5 & 5 & 4 & 5 & 1 \\
\end{array}
\]

\{ edges \}

\[
\begin{array}{c}
3 \\
\end{array}
\]
adjacency matrix

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 1 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 & 0 & 1 \\
3 & 0 & 0 & 0 & 0 & 1 \\
4 & 0 & 1 & 0 & 0 & 0 \\
5 & 0 & 0 & 1 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

adjacency list representation

\[
1 \rightarrow 2 \rightarrow 3 \rightarrow 6 \\
2 \rightarrow 5 \\
3 \rightarrow 6 \\
4 \rightarrow 5 \\
\{5\} \\
\]

Implementation note:

can be implemented with array of pointers
Graph Algorithms

Breadth-first search
given a graph $G = (V, E)$ and a source vertex s
compute distance to all vertices $u \in V[G] - \{s\}$
computes distance (smallest number of edges) from s to each reachable vertex
disCOVERS every reachable vertex from s
can produce a breadth-first tree with root s
that contains reachable vertices

\[\text{BFS}(G, s)\]

1. for each vertex $u \in V[G] - \{s\}$
 2. do color $[u] \leftarrow \text{WHITE}$
 3. $d[u] \leftarrow \infty$
 4. $\pi[u] \leftarrow \text{NIL}$
 5. color $[s] \leftarrow \text{GRAY}$
 6. $d[s] \leftarrow 0$
 7. $\pi[s] \leftarrow \text{NIL}$
 8. $Q \leftarrow \emptyset$
 9. \text{ENQUEUE} (Q, S)
10. while $Q \neq \emptyset$
 11. do $u \leftarrow \text{DEQUEUE}(Q)$
 12. for each $v \in \text{Adj}[u]$
 13. do if color $[v] \leftarrow \text{WHITE}$
 14. then color $[v] \leftarrow \text{GRAY}$
 15. $d[v] \leftarrow d[u] + 1$
 16. $\pi[v] \leftarrow u$
 17. \text{ENQUEUE} (Q, v)
 18. color $[u] \leftarrow \text{BLACK}$
called BFS because it discovers vertices uniformly across breadth of the frontier (discover vertices at k before discovering vertices at k+1)

to track progress, color vertices

all vertices start at WHITE
when vertices discovered becomes non-white (GRAY or BLACK)

BLACK vertices - all adjacent have been discovered
GRAY vertices - some adjacent haven't been discovered (WHITE)
and represent edge of frontier between discovered and undiscovered vertices

color\[u\] data structure tracks color of each vertex \(u \in V \)

\(\pi [u] \) data structure stores predecessor of \(u \)
if \(u \) has no predecessor, stores NIL

d\[u\] data structure stores distance from source \(S \) to vertex \(u \)

\(Q \) first-in, first out queue to manage the set of gray vertices.

(see Fig 22.3)
Depth-first search searches deeper into graph before backtracking.

edges explored out of the most recently discovered vertex \(v \) that still has unexplored edges leaving it.

computes discovery time \(d[u, j] \) and finishing time \(f[u, j] \) for each vertex.

creates depth-first forest of depth-first trees when its discovered (GRAYED) when its done (BLACKENED).

DFS(G) // notice no source vertex

1. for each vertex \(u \in V[G] \)
2. do color\([u, j] \leftarrow \text{WHITE} \) // initialize all vertices to white
3. \(\pi[u, j] \leftarrow \text{NIL} \) // initialize color, pred
4. time \(\leftarrow 0 \) // reset global time counter
5. for each vertex \(u \in V[G] \)
6. do if color\([u, j] = \text{WHITE} \)
7. then DFS-VISIT\((u)\) // while found call DFS-VISIT // becoming root of new tree

DFS-VISIT\((u)\)

1. color\([u, j] \leftarrow \text{GRAY} \) // paint vertex gray
2. time \(\leftarrow \text{time} + 1 \) // update global time
3. \(d[u, j] \leftarrow \text{time} \) // set discovery time
4. for each \(v \in \text{Adj}[u, j] \)
5. do if color\([v, j] = \text{WHITE} \)
6. then \(\pi[v, j] \leftarrow u \)
7. DFS-VISIT\((v)\) // examine neighbors, if white visit it
8. color\([u, j] \leftarrow \text{BLACK} \) // after every edge leaving \(u \) visited, paint black
9. \(f[u, j] \leftarrow \text{time} \leftarrow \text{time} + 1 \) // \(f \) is finish time to highlight // recursion

(see fig 22.4)
Shortest Path

many variants exist: single-destination shortest path

single-pair shortest path

all-pairs shortest path

we consider single source path \(p = <v_0, v_1, \ldots, v_k> \)

single source shortest path

- given a graph \(G = (V, E) \) compute the shortest path from a source vertex \(s \in V \) to each vertex \(v \in V \)

- assumes a weighted edge such that from each edge \((u, v) \) a weight \(w(u, v) \) is specified

\[
\text{weight of path } w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i) \text{ weighted path is the sum of weights of its constituent edges}
\]

```plaintext
INITIALIZE-SINGLE-SOURCE (G, s)

for each vertex \( v \in V[G] \)

do \( d[v] \leftarrow \infty \)

\( \pi[v] \leftarrow \text{NIL} \)

\( d[s] \leftarrow 0 \)

//upper bound weight of shortest path
```

```
RELAX \((u, v, w)\)

if \( d[v] > d[u] + w(u, v) \)

then \( d[v] \leftarrow d[u] + w(u, v) \)

\( \pi[v] \leftarrow u \)

//relaxing edge tests if we can improve shortest path so far
```

\[
\begin{array}{c}
\text{relaxation of edge } (u, v) \text{ with weight 2}
\end{array}
\]

\[
\begin{array}{c}
\text{RELAX}(5, 9, 2) \\
\text{RELAX}(5, 7, 2)
\end{array}
\]

\[
\begin{array}{c}
\text{RELAX}(5, 6, 2)
\end{array}
\]
Dijkstra's algorithm solves single-source shortest-path problem on weighted directed graph for the case when all edge weights are non-negative.

Alg maintains a set of S vertices whose final shortest-path weights from the source s have already been determined.

Q is a min-priority queue of vertices, keyed by their d values.

DIJKSTRA(G,w,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)

2. $S \leftarrow \emptyset$

3. $Q \leftarrow V[G]$

4. While $Q \neq \emptyset$

 5. $u \leftarrow$ EXTRACT-MIN(Q)

 6. $S \leftarrow S \cup \{u\}$

 7. For each vertex $v \in \text{Adj}[u]$

 8. d do RELAX(u,v,w)

(see fig 24.6)
Directed Acyclic Graph (DAG)
directed graph that contains no cycles

often used to represent procedural relationships
(inputs and outputs of connected components such as
logic circuits)

\[
\begin{align*}
\text{DAG } \checkmark \\
\text{DAG } \times \\
\text{v, c, d is a cycle.}
\end{align*}
\]

topological sort
computes linear ordering of all vertices in DAG
such that if G contains an edge (u, v) then
u appears before v in ordering

TOPOLOGICAL-SORT(G)
1. call DFS(G) to compute finishing times F[v] for each vertex v
2. as each vertex is finished, insert into front of linked list
3. return the linked list of vertices

can also use stack:

TOPOLOGICAL-SORT(G)
1. DFS(G, stack)
2. while stack ≠ φ
 1. u = stack.pop
 2. output u

modified DFS-VISIT:

DFS-VISIT(u, stack)
1. color[u] ← GRAY
2. time ← time + 1
3. d[u] ← time
4. for each v ∈ Adj[u]
 1. if color[v] = WHITE
 1. then π[v] ← u
 2. DFS-VISIT(v, stack)
6. color[u] ← BLACK
7. f[u] ← time
8. stack.push(u)
9. time ← time + 1

(see fig 22.7)
DAG gives us opportunity to take advantage of topological sort

later edge will not jump back to earlier node
- no need for extract
- ordering done, just call relax

DAG-SHORTEST-PATHS (G, w, s)
1 topologically sort vertices of G
2 INITIALIZE-SINGLE-SOURCE (G, s)
3 for each vertex u, taken in topological order
4 do for each vertex v E Adj [u]
5 do RELAX (u, v, w)

(see fig 245)