Lecture 6
Algorithmic State Machines (ASMs)

Control and Datapath Interaction

- Binary information in digital system can be classified into two categories
 - Data: Discrete elements of information manipulated by arithmetic, logic, shift, and other data processing
 - Operations implemented via digital components such as adders, decoders, muxes, etc.
 - Control: Provides command signals that coordinate the execution of various operations in data section to accomplish desired task

Flowcharts and Algorithmic State Machines (ASM)

- Flowchart:
 - Convenient way to graphically specify sequence of procedural steps and decision paths for algorithm
 - Enumerates sequence of operations and conditions necessary for execution

- Algorithmic State Machine (ASM):
 - Flowchart defined specifically for digital hardware algorithms
 - Flowchart vs. ASM:
 - Conventional flowchart:
 - Sequential way of representing procedural steps and decision paths for algorithm
 - No time relations incorporated
 - ASM chart:
 - Representation of sequence of events together with timing relations between states of sequential controller and events occurring while moving between steps

What Control Path Implements?

- Sequencing of control signals to execute algorithm implemented by circuit
- Algorithm:
 - Finite set of instructions/steps to solve a problem
 - Terminates in finite time at a known end state
- Many representations

Recipe

Ingredients:
- 1/3 cup unsweetened cocoa
- 1/4 cup cornstarch
- 1/3 cup flour
- 2/3 cup skim milk

Steps:
1. Combine all ingredients in a small saucepan.
2. Heat over low heat, stirring constantly, until mixture boils. Boil gently, stirring constantly, for one minute.
3. Pour into serving dishes and chill until thickened.
ASM Chart

- Three basic elements
 - State box
 - Decision box
 - Conditional box
- State and decision boxes used in conventional flowcharts
 - Conditional box characteristic to ASM

State box

- Used to indicate states in control sequence
 - State name and binary code placed on top of box
 - Register operations and names of output signals generated in state placed inside box
- Example
 - State name: S_pause
 - Binary encoding: 0101
 - Register operation: R ← 0
 - Register R is to be cleared to 0
 - Output signal asserted: Start_OP = 1
 - Launches some operation in datapath

Decision Box

- Reflects the effect of an input
 - External or internal, input or status
- Diamond shaped box
 - Condition to be tested inside
 - Two or more outputs represent exit paths dependant on value tested
 - In binary case one path represents true the other false, represented by 1 and 0 respectively
- Example
 - Check B
 - If B is true (=1), take path marked 1
 - If B is false (=0), take path marked 0

Conditional Box

- Unique to ASM
- Inputs come from one of exit paths of decision boxes
- Register operation or outputs listed inside box generated during given state
 - Generated as Mealy-type signals
 - Associated with the state transition
- Example
 - Status of input B checked
 - Conditional operation executed depending on result coming from decision box
 - If B = 1, assert Incr_Reg signal
 - Otherwise Incr_Reg remains unchanged
ASM Block

- Structure consisting of
 - One state box
 - All decision and conditional boxes associated with its exit paths
 - Block has one entrance and any number of exits paths
 - Each block in ASM dedicated to state of system during one clock cycle

- Simplifications
 - ASM Block not usually drawn because blocks are well defined
 - Can label just the “1” and omit the “0”
 - ASM chart consists of one or more interconnect ASM Blocks

ASM Example

- Convert pseudo code to ASM chart
- Example
 - Want to detect the number of 1’s in a 2-bit register called Input
 - Start input indicates when to begin comparison
 - Busy output indicates when comparison in progress
 - Ones hold count value
 - F outputs result

ASM Example Continued

- Interpretation of Timing Operations
 - Conventional flowchart, evaluation of each follows one another
 - Reg A incremented
 - Condition E evaluated
 - If E = 1
 - Clear B
 - Go to state S_3
 - In ASM the entire block considered as one unit
 - All operations within block occurring during single edge transition
 - The next state evaluated during the same clock
 - System enters next state S_1, S_2, or S_3 during transition of next clock
ASM – Mux

- Describe a 4x1 MUX using a ASM

\[S_0 \quad 001 \]
\[S_1 \quad 1 \]
\[x1 \quad x2 \quad x3 \quad x4 \]
\[f \]

4x1 mux

ASM – Full Adder

- Describe a 1-bit full adder using an ASM chart

\[A \quad B \quad \text{cout} \]
\[f \]

Smaller Multiplier

- Multiplier in array style
 - Fast, reasonable size for 4-bit: 4*4 = 16 partial product AND terms, 3 adders
 - Rather big for 32-bit: 32*32 = 1024 AND terms, and 31 adders

Smaller Multiplier -- Sequential (Add-and-Shift) Style

- Smaller multiplier: Basic idea
 - Don’t compute all partial products simultaneously
 - Rather, compute one at a time (similar to by hand), maintain running sum

... and 31 adders here (big adders)
Smaller Multiplier -- Sequential (Add-and-Shift) Style

- Design circuit that computes one partial product at a time, adds to running sum
- Note that shifting running sum right (relative to partial product) after each step ensures partial product added to correct running sum bits

Step 0:
- Set running sum to 0
- Load values

Step 1:
- Check multiplier bit 0 (mr0)
- mr0=1, add multiplicand to running sum
- Shift running sum right 1 position

Step 2:
- Check multiplier bit 1 (mr1)
- mr0=1, add multiplicand to running sum
- Shift running sum right 1 position

Step 3:
- Check multiplier bit 2 (mr2)
- Shift running sum right 1 position

Step 4:
- Check multiplier bit 3 (mr3)
- Shift running sum right 1 position

ASM – Sequential Multiplier

ASMs to FSMDs

- Able to convert between formats
- Once we have a FSMD, we’ve already seen how to implement in hardware
Not Used Much, But …

- There are commercial ASM Editors
 - Mentor Graphics
 - Summit Design, Inc.
 - Others...