[dentifying

Quality-
Requirement
Conflicts

BARRY BOEHM and HOH IN, University of Southern California

espite well-specified functional and interface
Without a well-defined _ requirements, many software projects have

set of quality-attribute : tailed because they had a poor set of quality-
requirements, software attribute requirements. Finding the right bal-
M

i ance of quality-attribute requirements is an
projects are vulnerable important step in achieving successful soft-
to failure. The authors ware requirements and products. 1o do this, you must identify
have developed QARCC, the conflicts among desired quality attributes and work out a
balance of attribute satisfaction. The importance of this balance
can be seen in examples that failed to find it:

¢ In the New Jersey Department of Motor Vehicles licensing

a knowledge-based tool
that belps users, developers,

and customers analyze system, engineers chose a fourth-generation language to satisfy
requiremnents and software affordability and timeliness objectives, but the system
identify conflicts failed because of performance-scalability problems.
among them. ¢ The initial development of the National Library of
Medicine MEDLARS II system had a plethora of layers and
recursions for portability and evolvability, but was eventually
IEEE SOFTWARE 074077459/95/@05.00 © 1996 (EEE 25

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

2. Identify stakeholders'
win conditions.

1. Identify
next-level
stakeholders.

7. Review, commitment.

6. Validate product
and process
definitions. L

5. Define next level of product
and process - including partitions.

3. Reconcile =
win conditions. .
Establish next-level
objectives, constraints,
alternatives.

4. Evaluate product
and process
alternatives.
Resolve risks.

Issue
schema

Win-condition
schemd

Involves

+
Covers Addresses

Option -
schema

Agreement

Adopts
schema '

Figure 2. WinWin negotiation model.

scrapped due to performance prob-
lems.

¢ The initial design of the
ARPANet Interface Message Processor
software — which was fortunately
revised — focused on performance at
the expense of evolvability through the
design of an extremely tight inner
loop.

Because it had an expert review
team, the ARPANet problem was iden-
tified early and thus avoided. However,
there is an overall scarcity of such soft-
ware expertise. It would be valuable to
capture the expertise that does exist
and make it more broadly available

through automated aids that analyze !

conflicts among software-quality
attributes.

We have developed an initial ver-
sion of such an aid. The Quality
Attribute Risk and Conflict Consultant
is a knowledge-based tool that can be
used early in the life cycle to identify
potential conflicts. QARCC operates
in the context of the WinWin sys-
tem,'? a groupware support system

developed at the USC Center for

Software Engineering to determine
software and system requirements as
negotiated win conditions. QARCC
works by examining quality-attribute
tradeoffs involved in software architec-
ture and process strategies. It may tell
you, for example, that a layered archi-
tecture will improve portability, but
usually at some cost in performance.

This article summarizes our experi-
ences developing the QARCC-1 pro-
totype using an early version of
WinWin, and our integration of the
resulting improvments into QARCC-
2. In some cases, terminology has
changed in the new version; these are
noted where appropriate.

THE WINWIN SYSTEM

To resolve quality-requirement
conflicts, you must at least be able to

¢ identify and negotiate quality-
attribute requirement conflicts and
tradeoffs and

¢ diagnose quality attribute con-
flicts on the basis of early information.

We use the WinWin system to pro-
vide the first capabilitv. For the second
capability, the QARCC tool operates
on the win conditions captured by the
WinWin system to diagnose potential
quality conflicts and tradeoffs among
requirements early in the development
process.

Figure 1 shows the WinWin spiral
model, which serves as the basis for the
WinWin system. The system uses
Theory W* to generate the objectives,
constraints, and alternatives needed by
the spiral model. To meet its goal of
“making everyone a winner,” Theory

W involves stakeholders in a process of
identifying their quality-attribute win
conditions (sector 2 in Figure 1) and
reconciling conflicts among quality-
attribute win conditions (sector 3).

Figure 2 shows the WinWin nego-
tiation model’s primary schemas and
the relations among them. Stake-
holders begin by entering their win
conditions, using a schema provided by
the WinWin system. If a conflict
among stakeholders’ win conditions is
determined, an issue schema is com-
posed, summarizing the conflict and
the win conditions it involves.

For each issue, stakeholders prepare
candidate oprion schemas addressing the
issue. Stakeholders then evaluate the
options, iterate some, agree to reject
others, and ultimately converge on a
mutually satisfactory option. The
adoption of this option is formally pro-
posed and ratified by an agreement
schema, which includes a check to
ensure that the stakeholders’ iterated
win conditions are indeed covered by
the agreement.

In large systems involving several
dozen or more win conditions, it is dif-
ficult to identify conflicts among them.
To aid in manual and automated con-
flict assessment, the win-condition
schema includes a slot for associating
the win condition with elements of a
taxonomy for the system domain.

WinWin also provides — and lets
stakeholders tailor — domain tax-
onomies. Figure 3 shows an example
for the software-engineering environ-
ment domain. The SEE domain taxon-
omy includes a “domain elements” sec-
tion in the center and two relatively
domain-independent parts: the infra-
structure on the left and the attributes
on the right. It is this attribute struc-
ture that the QARCC tool uses to
identify potential quality-attribute con-
flicts among win conditions.

For each win condition that identi-
fies a desired quality attribute, the
QARCC tool uses a knowledge base to

identify software architecture and

MARCH 1996

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

g hes = SEE s

" infrastructure i D Attributes
g 1S —
Integrahon tool: E e Process
tool addition eleSrEents Parf'oftz.w —— Product specific
=" Product specific
Interface hFe-cyclfe
_ Object suppor |
/ i \ * management 2l ‘
3 5 Dev. process Process | - Assurance
User ! Network support mgmt. tools :
i d, JE— . Schedule
. SEE b sis |\ Hinteroperabil
usage-support “ Design ana ysns nteroperability
AP tools e ond simulatfion
/ N\ Product - P T Ly Prgcs:ﬁss
. - €NgIneering ; Archifecture —Usability
:’SEE-GEN:/ tools e, [trqdleo.
B - U R B L
modeling mo elng ~~ generalor T & oo = Performance
P . - Consistency
/ e \ Testing
Specﬁl(ichon . S Evoivabvh?/
fools Reuse SUPP"” : L& Architecture and por‘rab ity
/ \ \ Generation simulation
R s o Design # i
, S;‘gz:fr:;\:gns (architecture] i Refinement Reusqblllty
* Code and
/ \ ebug e . .
< Composition = . Product risk
Figure 3. Example of WinWin domain taxonomy.
gu 'y
- qukeholder —7 Primary . ™ — De\‘cl|eo| Sfrofegy- _— Quality-attribute
Stoke?older firstorder — quality , lAgnbu're — quality - atiribute s’rr}?'reges
roles & inferests . affributes _— S1G00AtON | qiributes . relations .~ . are gfsdure
- ® proc

Dlrecﬂy concerns

Contrbutes-to

Figuré 4. QARCC k?lé@ledé&bllféXi%”%(ﬁﬂ‘é.

process strategies for achieving the
quality attribute. For each strategy, it
uses another part of its knowledge base

to identify potential conflicts with :

other quality attributes that could arise

if the strategy were employed. It then

provides suggestions about these

potential quality-attribute conflicts and !

options for resolving them.

QARCC KNOWLEDGE BASE

The context and information avail-
able for analyzing quality-attribute
risks and conflicts early in the life cycle
comes primarily from the prioritized

IEEE SOFTWARE

' QARCC knowledge base,

requirements, as expressed by different
system stakeholders’ win-condition
schemas. Overall, customers’ primary
concerns tend to focus on such attrib-

utes as cost and schedule, while users
tend to be more directly concerned |
' about such attributes as performance |

and assurance.

As the left side of Figure 4 shows,

- the structure of the stakeholders’ first-

order interests forms a part of the
which
includes a quality attribute hierarchy
similar to those in previous analyses +6
The major difference here is that our
hierarchy’s highest level is connected
to the quality attributes most directly

Positively/negatively influences

valued by the various classes of stake-

holders. For example, a maintainer
tends to be primarily concerned with
evolvability and portability and only
secondarily concerned with develep-
ment cost, schedule, and reusability,
which tend to be primary concerns of
customers and developers. This struc-
ture enables QARCC to associate qual-
ity-attribute risks and conflicts with the
appropriate stakeholders. It thus flags
potential concerns and provides stake-
holders with advice for resolving them.

The other major component of the
QARCC knowledge base, shown on
the right of Figure 4, is a set of rela-
tionships between software architec-

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

Mumfcnner

Availability/ Integrity

survivability

General public Inferoperator ~ User
AT e A
" T
| o /
Directly o
concerns o . . = _
Assurance Interopgrability Usability Performance
. / ”ﬁ ‘ PYYS o
Contributes / \ Interface ‘
to \ _com atibili o S
/1 N patioility
Reliahility/ /|1 \ Security/ e Architecture Element i
accuracy/ | | riva e balance performance |
W\ . P |
/ / \ ‘\\\ ;
/ Vo . S~ |
Correctness | \ Safety Mission Controllability ~ Verifiability |
/ orientation

Scalability |

Comprehensiveness

F|extb|[|fy Modlhc:blhty

Figure 5. Mapping of stakeholders’ primary concerns onto quality attributes.

ture and process strategies and their
usual effects on quality attributes.
For example, a layered architecture
has a positive influence on portabili-
ty because a layer can hide platform
dependencies; it has a negative
influence on performance because
in-line machine-dependent code is
usually more efficient. Thus, using a
layered architecture strategy to
achieve portability will frequently
cause a conflict with performance
objectives.

MAJOR COMPONENTS
AND RELATIONS

The most frequent stakeholders are
users, customers, developers, maintain-
ers, interfacers, and the general public.
Others could be product-line man-
agers, testers, or subcontractors.
Complex systems may have several dif-
ferent sets of users and customers.

First-order stakeholder interests. We
determined the primary-attribute win

| /%/
1 /// -

Evolvobxh!‘r Cosfcnd schedu[e Reusability
and pork]b ity ;

Deve|oper Customer
—

<

\
\ o
Developmenf Reusable
GFFOI'C[O[DI[IT)’ | SW assets
\\ \ Development Key
\ timeliness development
| Momfcmabﬂny/ personnel
\
i\ debuggability
Expondabllny

g

conditions for each stakeholder role
through our experience in applying
Theory W to complex, multistake-
holder projects such as Army WWM-
CCS Information System, STARS, and
the WinWin system itself. Figure 5
diagrams how we mapped the stake-
holders’ primary concerns to quality
attributes. At the top of Figure 5 are
the stakeholders and their primary
requirements. Second-order stakehold-
er interests are also important (the
developer cares about usability because

One initial approach to
specifying quality attributes
was the Requirements-
Properties Matrix.! It pro-
vided a cross-impact matrix
between the software func-
tional requirements and the
required properties or attrib-
utes, which served as a man-
ual framework for identify-
ing derived functional
requirements implied by the
attribute requirements.
Several of the Rome
Laboratory Quality Metrics
reports — such as the one by
James McCall and his col-
leagues’ — provided check-
lists of attribute capabilities
to be considered in require-
ments specifications, but did
not address automated con-
flict analysis. A later Rome-
sponsored study by Douglas
Schaus developed a frame-

IDENTIFYING QUALITY REQUIREMENTS: A COMPARISON

=

work for an automated assis-
tant for 5pec1fvmg quality
software.”

Tom Gilb provides a
framework for finding and
specifying desired attribute
levels in terms of solution
specification, tagging, hier-
archies, modularization, and
cross-referencing, but no
resolution 2ids are provided.”
Steve Easterbrook provides a
good conceptual framework
for conflict resolution
between domain descriptions
with computer-supported
negotiation.” He also pro-
vides an approach for resolv-
ing conflicts between differ-
ent domain specifications,
and provides an example
using a library information-
system specification.
Lawrence Chung and his
colleagues provide a good

svstem framework for
increasing traceability of
quality attributes when
changes in quality attributes
or their importance, or
design decisions and ratio-
nale, occur during the devel-
opment process.® The sys-
tem draws on domain
knowledge to aid in assessing
quality attributes, whereas
our approach is domain-
independent (although tai-
Jorable to specific domains).
Rick Kazman and his col-
leagues provide a five-step
method for analyzing soft-
ware architectures by analyz-
ing three separate user-inter-
face architectures with
respect to the quality of
modifiability.” They use rep-
resentative operations to
analyze the relationship
between software architec-

TSR

tures and quality attributes,
but leave open the question
of the sufficiency of the rep-
resentative operations.
Kazman and Len Bass
explore the relationship
between architectural “unit
operations” and a method
for deriving software archi-
tectures from eight quality-
attribute requirements.®
They provide a useful first-
order conflict analysis of the
interaction between the
eight attributes, which we
have used and extended in
our analyses. However, their
method of deriving architec-
tures from requirements is
somewhat oversimplified.
Our assessment is that find-
ing the right balance among
conflicting quality attributes
is too complex for simple
algorithms, and that provid-

U RN

T

MARCH 1996

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

the user does), but these are generally

addressed by negotiating first-order

stakeholder win conditions.

shows, the assurance attribute, which is
a primary concern of users and the

process strategies. We determined
these strategies as a result of reviewing
and filtering numerous studies of indi-

. vidual and multiple quality attributes.

Attribute elaboration. The lower set of
arrows in Figure 5 show the next level |
of detail in the hierarchy. As the figure |

gencral public, may have several subat-

tributes.

In many cases, it is sufficient to rea- .

son about attribute conflicts at the pri-

mary attribute level, but the lower lev-

els are important at times — such as
when conflicts arise between fault-tol-
erance data distribution for availability
and restricted data access for security.

Strategy-attribute relations. Table 1
shows the general set of quality-
attribute strategies in the knowledge
base, organized into product and

ing options and suggestions
for stakeholders and archi-

approach requires a domain-

several architecture-based strategies for
improving quality attributes, including
top-level assessments of their effect on
other quality attributes. For example,
the input-checking strategy applies to
several assurance subattributes, such as
invalid data checking for reliability and
unauthorized-access checking for secu-
rity. Input checking also reinforces
interoperability through validity and
access checking across system interfaces.
It reinforces usability by providing rapid
feedback on invalid user inputs. On the
other hand, the input-checking activi-
ties require additional code, memory,
and execution cycles, and thus may con-
flict with the cost/schedule and perfor-
mance attributes.

and Design,” Proc. IFIP 74,
North Holland, Amsterdam,

Elaboration of attribute architecture

: strategies. We are developing a formal
| structure for the quality-attribute
i architecture strategies summarized in
Table 2 shows the elaboration of
. definition for each elementary strategy,

Table 2. It is currently composed of a

preconditions to check whether or not
the environments or sitvations are cli-

+ gible for applying the strategies, post-

conditions to describe the results or
actions after applying the strategies,
effects on quality attributes with ratio-
nale, and options for resolving quality-
attribute conflicts.

Figure 6 shows the structure of ele-
mentary architecture strategies for
quality attributes; Figure 7 shows three
examples. The preconditions for the
input-acceptability-check strategy are
sets of candidate inputs and acceptabil-
ity criteria. As the figure shows, the
effect on assurance is positive, while the
effects on performance, cost, schedule,

pp. 132-139.

~

tects is likely to have a high-
er payoff.

The object-oriented
design patterns developed by
Erich Gamma and his col-
Jeagues provide additional
candidate-attribute strate-
gies, particularly in the areas
of evolvability/portability,
interoperability, and
g reusability.” We are analyz-

" ing these to capture exten-

+ sions to the QARCC knowl-
edge base. Like our
WinWin and QARCC sys-
tem, William Robinson and
Steve Fickas provide a model
and a tool (called “Oz”) that
detects and resolves con-
flicts, and provides an inter-
active resolution-choice pro-
cedure and records of the
negotiation process.'” Their

IEEE SOFTWARE

dependent knowledge base
covering very detailed-level

1974, pp. 192-197.

. R. Kazman et al., “SAAM: A

Method for Analyzing the Pro-

conflicts (SllCh as conflicts of 2. _]47;\/10(.1:11(1‘, ‘P, Richﬂrds, and G. pertief of Software ;’\)rcl\litc-c—‘)

. . . R Walters, “Factors in Software tures,” Proc. 16th Int’l Conf. Soft-
loan PenOd ma llbf’dfy S Sys- Quality,” Tech. Report 77C1S02, ware Eng., IEEE, CS Press, Los
tem requircments), In con- General Electric Command and Alamitos, Calif,, 1994, pp. 81-90.
trast, our approach focuses infloim;‘;l:); Systems, Sunnyale, 8. R. Kazman and L.. Bass, “Toward
on don]ain-independent <Al W94 Deriving Software Architectures

ot : : 3. D. Schaus, “Assistant for Specify- Trom Quality Attributes,” CMU/
COIlfjllCts]nYO]Vlng hlgh—lf}'Ve] ing Quality Software (\SQ}Q) SEI-94-TR-10, Software Engi-
quahty—attrlbute and archi- Mission Analysis,” RADC-TR- neering Institute, Carnegie :
tecture-strategy conflicts to 90-348, Rome Laboratory, Meclion University, Pittsburgh, :
achieve generality and scala- Rome, N.Y., Dec. 1990. Penn., 1994,
blhty A related and widely 4.°1". Gilb, Principles of Software 9. E. Gamma et al., Design Patterns:
used approach for reconcil- Engineering Management, Elements of Reusable Object-Orient- :
. . . . Addison-Wesley, Reading, Mass., ed Software, Addison-Wesley,
ing quality attributes is qual- 1988. Reading, Mass., 1995.
ity-function deployment. Tt o i) o
L e 5. 8. Easterbrook, “Handling Con- 10. W.N. Robinson and S. Fickas,
Isa largdy manual appr(mCh flict Between Domain Descrip- “Automated Support for Re-
for which QARCC can pro- tions with Computer-Supported quirements Negotiation,” AA441-
vide COITlplCITl entary auto- Negotiation,” Knowledge Acquisi- 94 Workshop on Models of Conflict
N : tion, Mar. 1991, pp. 255-289. Management in Cooperative
mated Support. Problern Solving, AAAL Press
6. L. Chung, B. Nixon, and E. Yu, Menl P n (?«’l"f Joo04.
“Using Non-Functional Require- fiemlo Fark, St :
REFERENCES ments to Systematically Support 1. L.P. Sullivan, “Quality Function

1. B. Bochm, “Some Steps Toward
Formal and Automated Aids to
Software Requirements Analysis

Change,” Proc. Second Int’l Conf.
Requirements I'ng., IELE CS
Press, Los Alamitos, Calif., 1995,

Deployment,” Quality Progress,
June 1986, pp. 39-50.

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

Attribute

Assurance

Interoperability
Usability

Performance
Evolvability/
Portability

Cost/Schedule

Reusability

Product Strategies

Distributability, generality, integrity functions,

. TABLE1

 GENERAL QUALITY-ATTRIBUTE STRATEGIES

Process Strategies

Accuracy optimization, backup/recovery,
diagnostics, error-reducing user input/output
fault-tolerance functions, input checking,
Instrumentation, integrity functions, intrusion
detection and handling, layering, modularity,
monitoring and control, redundancy.

interface specification, lavering, modularity,
self-containedness.

Distributability (groupware), error-reducing user
input/output, help/explanation, modularity,
navigation, Ul consistency, U] flexibility, undo,
user-programmability, user-tailoring.

Architecture balance, descoping, distributability,

domain architecture-driven, faster hardware,
instrumentation, optimization (code/algorithm),
parallelism, pipelining, platform-feature exploitation.
Distributability, generality, input assertion/type
checking, layering, modularity, self-containedness,
understandability, user-programmability, user-
tailorability, verifiability, visibility functions.
Architecture balance, descoping, domain
architecture-driven, modularity, reuse.

Domain architecture-driven, portability functions.

All of Above

Failure modes and effects analysis, fault-tree
analysis, formal specification and verification,
inspections, penetration, regression test,
requirements/design verification and validation,
stress testing, test plans and tools.

Interface change control, interface-definition tools,
interface testing and analysis, interoperator
involvement, specification verification.

Prototyping, usage monitoring and analysis,
user engineering, user-interface tools,
user involvement.

Benchmarking, modeling, performance analysis,

prototyping, simulation, tuning, user involvement:

Benchmarking, maintainer and user involvement,
portability-evolution-vector specification,
prototyping, requirement-evolution-vector
specification and verification.

Design to cost/schedule, early error-elimination
tools and techniques, personnel/management,
process automation, reuse-oriented processes,
user and customer involvement.

Domain architecturing, reuser involvement,
reuse-evolution-vector specification and
verification.

Descoping, domain architecture-driven, reuse
(if strong with regard to attribute).

Analysis, continuous process improvement,
incentivization, inspections, personnel/
management focus, planning focus, requirements/
design validation and verification, review emphases,
tool focus, total quality management.

and evolvability are negative.

We followed six steps for building
the knowledge base for the strategy-
attribute relations and quality-attribute
strategies:

1. Identify primitive quality-attribute
strategies. Table 1 summarizes the cur-
rent working set of strategies.

2. For each identified strategy, ana-
lyze the effects on each of the other pri-
mary quality attributes as positive (+)
or negative (-). For any pair of strate-
gies with the same + and - pattern,
combine them if they are sufficiently
SYHONyMmous.

3. Define the preconditions and post-
conditions involved in applying the qual-
ity-attribute strategies. These sharpen
the strategy definitions, help validate
the + and - assignments, and help iden-
tify more complex interactions.

4. Elaborate the more complex
strategy-attribute relations (not just
positive/ negative). For example, the
monitoring and control strategy
improves assurance at the cost of near-
term performance, but also collects
performance data supporting long-term
performance improvement via tuning.

5. Formulate options to resolve the

identified conflicts among quality
attributes. Performance tuning is one
example.

6. Update strategies based on expe-
rience.

-QARCC OVERVIEW

Figure 8 shows the QARCC concept
of operation for identifying potential
quality-attribute conflicts, flagging
them for affected stakeholders, and sug-
gesting options to resolve the conflicts.

QARCC is triggered by a stakehold-

MARCH 1996

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

TABLE 2

QUALITY-ATTRIBUTE STRATEGIES AND RELATIONS: ARCHITECTURE STRATEGIES

Primary Architecture OtherAttribute OtherAttribute Special Cases/
Attribute Strategy Reinforcement Conflicts Comments
Assurance Input checking Interoperability, usability ~Cost/schedule performance
Redundancy R o Cost/schedule, evolvébility,
performance, usability
Backup/recovery Cost/schedule, evolvability
performance
Monitoring Cost/schedule, Long-term performance
and control performance enforcement via tuning
Inter- Input checking Assurance, usability Cost/schedule, performance
operability
Evolvability
/portability Layering Interoperability, Cost/schedule, performance
reusability
Modularity Reusability, usability Cost/schedule, performance
(platform- (displays)

dependent functions)

<options>::i[Options:<string>

Portability ‘ Cost & Schedule

er entering a new win condition with a
quality-attribute taxonomy clement.
Figure 9 shows screendumps from
QARCC-I. For the attribute of porta-
hility in screen A, QARCC first consid-
ers its product and process strategies as
given in Table 1 (such as layering to
achieve portability). Tt then examines
these strategies to search for potential
conflicts with other attributes. ‘
QARCC determines these potential |
conflicts from the portion of its knowl-
edge base summarized in Table 2. For
example, layering produces likely con- :
flicts with cost/schedule and perfor-
mance. (In QARCC-1, cost and sched-
ule were combined under “development
affordability” and performance was

IEEE SOFTWARE

{definition>::=[<{diagram>]Definition:<{string>
{preconditions>::=[Preconditions:<string>]
{pogtconditions>::=[Postconditions:{string>]

[-Pros:<{string>]

[-Cons:<string>]]
{quality-attributes>::={{quality-attribute>[,{quality-attributer]}
{quality-attribute>::=Assurence | Interoperability | Usability | Performance | Evolvability &

‘ Reusability -

Figure 6. The structure of elementary architecture strategies for quality attributes.

called “efficiency.”) These are shown in
the “potential conflict list” in screen B
of Figure 9.

QARCC then uses the relationships
shown in Figure 5 to identify the stake-
holders affected by these potential con-
flicts (developer and customer for cost
and schedule; user and customer for per-
formance). For these stakeholders,

© QARCC pops up the “conflict advisor

note” window (screen B) with the poten-
tial conflicts list generated by the new
win condition. The list also enumerates
any existing stakeholder win conditions
that have conflicted attributes in their
“taxonomy elements” slot. If no such

(effects>::=[{-<{quality-attributes>: (* (' (+/-)[.{rationale-string>]')"}

win conditions exist, a “missing win con- |

dition” message is shown. For example,

1]

in screen B, development affordability
has two existing win conditions —
hohin-winc-5 and hohin-winc-9 — but
assurance and usability have none.

The stakeholder can select affected
win conditions with the mouse and then
click on the create issue button to have
QARCC draft an issue schema shown in
screen C. If no affected win conditions
exist, the stakeholder can click on the
Create WinC button to have QARCC
draft a win-condition schema, shown in
screen D.

An example of the draft material pro-
duced by QARCC is shown in the
Other’s Comments field of screen C,
which cautions the stakeholders that
affordability strategies such as reuse will

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

Input —-

. Input-acceptability Function ————Output

chec
Invalid inpuf«J

Definition:

An architectural composition that precedes a function by an acceptability check of its inputs.
Preconditions:

Candidate inputs, acceptability criteria.
Postcondifions:

IF valid, pass input info the Function, otherwise, indicate “Invalid Input” and exit.
Effects on Quality attributes:

e Assurance: {+) filters out unacceptable inputs. e Cost, Schedule: (-} more to specify, develop, and verify.
* Performance: (-} input-check requires resources. o Evolvability: (-) more to modify.

- N Loyerl
] / \\‘ b\ ayer
4 W layerd

Definition:

A hierarchical architectural composition in which each layer can communicate only with the adjacent upwards or downwards layer.
Preconditions:

Inferface and protocol between a layer and an adjacent layer, request to pass data and/or control from layer to layer.
Postconditions:

Data and/or control passed from layer to layer, or nofification of interface/protocol violation.
Effects on Quality attributes:

* Evolvability, Interoperability, Portability, Reusability: {+) hides sources of variation inside inferface layers.

« Performance: (-} requires more interfaces and data and/or control transfers via protocol.

® Cost, Schedule: (-) more to specify, develop, and verify; can reduce integration cost and schedule.

(B) R
Input e Function Output
Performance] I Control
Monitoring ———— Performance andlysis
Definition:

An architectural composition that monitors the performance of function, controls the configuration or environment fo stabilize
the function {for example, to avoid buffer overflows), and/or reports the result for subsequent performance analysis.
Preconditions:

Monitoring instrumentation, control limits and algorithms.

Postconditions:

I the function is stable, checks the performance and reports it, otherwise sabilizes the function by controlling the configuration or environment.
Effects on Quality aftributes:
® Assurance: (+) avoids undesirable states.

e Performance: (-) requires additional processing in short term; (+) improves performance in long term via system tuning.
e Cost, Schedule: (-) more to specify, develop, and verify.
(9]

Figure 7. Three examples of primitive quality-attribute architectural strategies: (A) input-acceptability check, (B) layering, and
(C) monitoring.

conflict with the portability win condi-
ton if the reused software is not

Stqkeho‘dérs enter wiﬁ ’ For each aftribute por]t;bki.' king the Options b tl
condition with Identify attribute strategy identified, y clicking the Uprions button at the

qualiy-cttribute - siategies forwin ——~ determine likely bottom of screen C, the stakeholde‘r can
axonomy element. condition. negative effects on have QARCC draft a set of candidate
ofher attributes. resolution options. As the left window
‘ in screen E shows, the QARCC knowl-
edge base generated six options to
resolve the conflict between develop-
ment affordability and portability:
+ reduce or defer product functions;
+ find, incorporate some relevant
reusable software;
+ find, engage expert performers;
+ use design-to-cost process and
identify lower priority features to defer
if necessary;

DER R R

Send 'message fo stakeholder indicating potential v st
conflict with affected win condition. :Provide drafts = ves | For each affected
of issue and candidate.issue-resolution options. . -+ attribute, do directly
! concerned
No stakeholders have
win conditions?

STE

Gt

Send message to directly concerned stakeholders
indicating potential conflict. Provide draft
of win condition.

Figure 8. QARCC concept of operation. ¢ relax constraints on schedule,

MARCH 1996

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

Win—Condition

Owner

Creation Date

1 s L - - 1
S Conflict Advisor Note

Otirer's Corarme

To : Developer, Customer, User, Maintainer, Interoperator
Subjest : Potential Conflict from hohin—winc-11

The new win condition { hohin-winc-11)
- Entered by : hohin { User)
- On Attribute : Portability

results in the following potential conflicts.

Potential Conflict List
Div

%, hohin-wirn hedule (hohdn-winc-1. , hehin-wine-9)

5

clopment Affardanility © co

(hohar

irity | Medium]
oY | v | -
(A)

¢
| H

F
Usability A7 W¥in Cenéitiyn

CCroate Tecue

reate Wi

(B

Conflict/Risk/Uncertainty

CRU Type
veation Date
Rationale

conflicts betw
Development. Affordsbility an
Bortebility

non-portability J{ Reusing

non-portable program might inprove H Win-Condition
(de) the cost, but not
Owner Stakeholder
Action i [hohin P ‘
Development Affor ! E Creation Date Revision Date

07714795 ;

Priority | Medium 1| |} | Other's Comments

Conflict hetween in
znd, Wi

Upr,l;ate rv_‘ancelv

Tue to:

(C)

]+
Taxonomy Elements KWIC

l L) o

Contribute To
Status | In &

Surance

| Very High =1 | I

Delete | Cocoma |

orrfocme ;
toprocess:
ink= on schedul

Cancel l

)
(D)

3t and schedule of

: i
w for referced |

¢
H
P
£
i
;
i
i
£
§

OK

i

(E)

Figure 9. An example of the initial implementation of QARCC.

IEEE SOFTWARE

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

o . TABLES ‘ L
. NUMBER OF CONFLICTS IDENTIFIED BY QARCC-1.

Not found Found, Found,

by QARCC significant insignificant
Conflicts found in
WinWin user exercise 0 2 0
Conlflicts not found
in WinWin user exercise 0 5 3
performance, hardware, and other modify

attributes; or

¢ use better tools and practices.

As the options are generalized,
stakeholders can tailor them to their
special situations. QARCC also drafts
pros and cons for the options (right
window in screen E), helping the
stakeholders evaluate the options and
converge on a mutually satisfactory
(win-win) option.

EXPERIMENTAL RESULTS

QARCC-1 has been applied to sever-
al sample projects, primarily in satellite
ground stations. In the experiment
described here, we applied QARCC
retroactively to the win conditions for a
representative SEE to support a satellite-
ground-station product line. The repre-
sentative developer was a workstation
vendor’s CASE division, the representa-
tive user was a large aerospace ground-
systems division, and the representative
customer was the hypothetical US Space
Systems and Operations Command. |

The multistakeholder WinWin |
exercise generated 21 win conditions,
including the following quality-relat-
ed conditions:

¢ Initial operational capability
(I0OC) cost less than $7 million

¢ Full IOC delivery schedule with-
in 25 months

¢ Interoperable SEE functions and ;
tools ‘

¢ Low development risk

¢ Low maintenance cost; easy to

¢+ Commercializable middleware
and commercially supported SEE to
improve evolvability

¢ Broadly applicable across product
line to improve evolvability

The main objective of the WinWin
exercise was to determine the ability of
WinWin to support renegotation of a
new win-win equilibrium solution
when a new win condition was added
to the base of 21 in-equilibrium win
conditions. The new win condition,
“support the development of multi-
mission satellite ground stations,”
caused a cost and schedule conflict
with the previously negotiated equilib-
rium. After determining that WinWin
could successfully support such a rene-
gotiation,” we decided to apply
QARCC to the body of win conditions
to see how many potential conflicts it
would identify.

First, we wanted to see if QARCC
would identify the two conflicts used in
the renegotation process. These were
conflicts of cost/schedule with evolv-
ability and interoperability: The stake-
holders had rejected an option to
recover cost and schedule by reusing !
legacy software that was deficient in
evolvability and interoperability.
Second, we wanted to see if QARCC
would identify other potential con-
flicts, and if so, how many of them

i would have significant relevance to the

satellite-ground-station system.

The results are shown in Table 3.
QARCC found the two significant
conflicts identified in the WinWin

exercise. It also found eight more
potential conflicts. Five of these were
considered significant in the satellite-
ground-station situation: conflicts of
cost/schedule with assurance, perfor-
mance, and reusability; and conflicts of
interoperability and evolvability with
performance. The conflicts not consid-
ered significant were those of evolv-
ability with assurance and usability,
and a conflict of cost/schedule with
usability. We are reviewing these three
“false alarm” situations to determine if
the potential-conflict threshold for
them was set too low for other situa-
tions as well. If so, we plan to drop
them as being more time-consuming
than beneficial.

rom our initial experimentation,
we concluded that QARCC can
alert users, developers, customers, and
other stakeholders to conflicts among
their software-quality requirements
and can help them identify additional,
potentially important quality require-
ments. We also concluded that
QARCC needs further refinement to
avold overloading users with insignifi-
cant quality-conflict suggestions. We
are now refining the knowledge base to
address more detailed quality attributes
in a more selective fashion.

In our discussions with USC-CSE’s
industry and government affiliates who
participated in demonstrations of
QARCC-1, there was a strong consen-
sus that it provided a useful framework
for stakeholders to systematically
resolve software quality-attribute con-
flicts. They also agreed that the semi-
automated approach provided a good
way to balance human skills and com-
puter tools in addressing quality-trade-
off issues.

In our development and experimen-
tation with QARCC-2, we are hoping
to show that the QARCC approach is
also scalable to large systems with
many quality conflicts and that the
effectiveness of the QARCC approach

is largely domain-independent. L4

MARCH 1996

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This research is sponsored by the Advanced Research Projects Agency
through Rome Laboratory under contract F30602-94-C-0195 and by the
affiliates of the USC Center for Software Enginecring: Aerospace
Corporation, US Air Force Cost Analysis Agency, AT& T Bell Laboratories,
Bellcore, Computer Science Corporation, Defense Information Systems
Agency, E-Systems/Raythcon, Electronic Data Systems, Hughes Aircraft,
Institute for Defense Analysis, Interactive Development Environments, Jet
Propulsion Laboratory, Litton Data Systems, Lockheed/Martin, Loral
Federal Systems, MCC Inc., Motorola, Northrop Grumman Corporation,
Rational Software, Rockwell International, Science Applications International,
Software Engineering Institute, Software Productivity Consortium, Sun
Microsystems, T'exas Instruments, TRW Inc., US Air Foree Rome
Laboratory, US Army Rescarch Laboratory, and Xerox Corporation.

REFERENCES

1. B. Boehm ct al., “Software Requirements As Negotiated Win
Conditions,” Proc. First Int’l Conf. Requirements Eng., IEEE CS Press, Los
Alamitos, Calif., 1994, pp. 74-83.

. B. Boehm et al., “Software Requirements Negotiation and Renegotiation
Aids: A Theory-W Based Spiral Approach,” Proc. 17th Int’l Conf. Software
Eng., IEEE CS Press, Los Alamitos, Calif., 1995, pp. 243-253.

3. B. Bochm. and R. Ross, “Theory W Software Project Management:
Principles and Examples,” IEEE Truns. Software Eng., July 1989, pp. 902-
916.

. V. Basili and IL. Rombach, “Tailoring the Software Process to Project
Goals and Environments,” Proc. 9th Int’l Conf. Software Eng., IEEE CS
Press, Los Alamitos, Calif.,, 1987, pp. 345-357.

. B. Boehm et al., Characteristics of Software Quality, 'RW Series of
Software "l'ech. Report TRW-85-73-09, TRW Systems and Energy,
Inc., Redondo Beach, Calif., 1973.

. J. McCall, P. Richards, and G. Walters, “Factors in Software Quality,”
Tech. Report 77CIS02, General Electric Command & Information
Systems, Sunnyvale, Calif., 1977.

]

N

w

[N

Barry Boehm is the TRW Professor of Software
Engineering and Director of the Center for Software
Engineering at the University of Southern California.
His current research involves the WinWin groupware
system for software requircments negotiation, architee-
ture-based models of software quality attributes, and
the Cocomo 2.0 cost-estimation model.

Boehm reccived a BA in mathematics from Harvard
University and an MS and PhD in mathematics from
the University of California at Los Angeles. He is a fel-
low of the IEEE and the ATAA.

Hoh In is a PhD student at the Center for Software
Engineering at USC. His research interests are in qual-
ity conflict resolution, including knowledge-based soft-
ware requirements engineering, software architecture,
design patterns, and softwarc metrics and cost-estima-
tion models.

Hoh received a BS and an MS in computer science
from Korea University and won prizes for papers from
the Korcan Information Society and the Korean

Academy Promotion Foundation.

Address questions about this article to Boehm or In at the Center for Software
Fngineering, USC, Los Angeles, Calif. 90089-0781; boehm@sunset.usc.edu or
hohin@sunset.usc.edu. Additional information is available at
http://sunset.usc.edu.

IEEE SOFTWARE

CALL FOR PAPERS

Third IEEE International Symposium on

Requirements Engineering
January 5-8, 1997 » Annapolis, Maryland, USA

The 1997 symposium will be held in four exquisite 18th-century
inns clustered in the beautiful colonial seaport of Annapolis on
the scenic shores of Chesapeake Bay. It will bring togcther
researchers and practitioncrs for an cxchange of ideas and
experiences. The program will consist of invited talks, paper
presentations, panels, tutorials, working groups, demonstrations,
and a doctoral consortium. The program will also include a
parallel industrial track with presentations on industry problems
and experiences, transferable technology, and commercial tools.
Papers describing original rescarch in requirements engincering
are invited. Symposium organizers extend a special invitation for
paper submission and participation to rescarchers and practitio-
ners working in high assurance, safety-critical and mission-
critical systems, and formal approaches to requircments.
Authors should submit six (6) copics of cach full paper (no
email or FAX) to the Program Chair. Papers must not cxcced
6000 words and must be accompanicd by full contact informa-
tion including name, address, email address, and tclephone and
FAX numbers. Authors should also submit the title, abstract, and
classifications of each paper by email to the Program Chair a
month before the paper is due along with full contact informa-
tion. All papers must be classified according to the symposium
classification scheme. For a full call for papers, including the
classification scheme, contact the Program Chair, usc anonymous
FTP from cs.toronto.cdu (/dist/ISRE97/CFP), or see the WWW
page at http://www.itd.nrl.navy.mil/conf/ISRE97. Developers or
researchers wishing to present in the industrial track should
submit an abstract to the Industrial Chair. Students interested in
prescnting at the doctoral consortium should send an extended
abstract to the Doctoral Consortium Chair by Sept. 15, 1996.

IMPORTANT DATES:

April 1, 1996: Title, abstract, and classifications due
May 1, 1996: Full papers, industry abstracts due
July 1, 1996: Notification of acceptance
September 1, 1996: Camera-ready copy due

FOR MORE INFORMATION, CONTACT:
Connie Heitmeyer, General Chair
Code 5546, Naval Research Lab, Wash., DC 20375
+1-202-767-3596; heitmeyer@itd.nrl.navy.mil
John Mylopoulos, Program Chair
Dept. Computer Sci., Univ. of Toronto, 6 King’s College
Rd., Rm 283, Toronto, Ontario Canada M5S 3H5
+1-416-978-5180; fax +1-416-978-1455
jm@cs.toronto.edu
Stuart Faulk, Industrial Chair
Kaman Sciences; +1-202-404-6292
faulk@itd.nrl.navy.mil
Myla Archer, Doctoral Consortium Chair
Naval Research Lab; +1-202-404-6304
archer @itd.nrl.navy.mil

Sponsored by

@ COMPUTER SOCIETY

5(YEARS OF SERVICE +1946-1996

{EEE
JEEE Computer Society TC on Software Engineering
In cooperation with
ACM SIGSOFT, IFIP WG 2.9 (Software Requirements)

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

mailto:boehin@sunset.usc.edu
mailto:hohin@sunset.usc.edu
http://suiiset.usc.edu
http://cs.toronto.edu
http://www.itd.nrl.navy,mil/conf/ISRE97
mailto:heitmeyer@itd.nrl.navy.mil
http://Qcs.toronto.edu
http://itd.nrl.navy.mil
http://archerQitd.nrl.navy.mil

