
Identifiing
Quality-

~ H

Requirement
Conflicts

BARRY BOEHM and HOH IN, University of Southern California

Without a weLl-de$ned
set of quality-attyibute
requirern en ts, sofi;-d.are
pyojects aye vulneyable
tofiilure. The authors
have deve Loped QA R CC,
a knowledge-based tool
that helps usen, dmelopeus,
and customem anaLyze
yeguivements and
identifj conflicts
among them.

I E E E S O F T W A R E

espite well-specified functional and interface
requirements, many software projects have
failed because they had a poor set of quality-
attribute requirements. Finding the right bid-
ance of quality-attribute requirements is an
important step in achieving successful soft-

ware requirements and products. To do this, you must identify
the conflicts among desired quality attributes and work out a
balance of attribute satisfaction. The importance of this balance
can be seen in examples that failed to find it:

+ In the New Jersey Department of Motor Vehicles licensing
system, engineers chose a fourth-generation language to satis5
software affordability and timeliness objectives, but the system
failed because of performance-scalability problems.

+ T h e initial development of the National Library of
Medicine MEDLARS I1 system had a plethora of layers and
recursions for portability and evolvability, but was eventually

0 7 4 0 7459/96/$05 0 0 Q 1996 I E E E

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

2 Identify stakeholders’
win conditions

3 Reconcile
win conditions

Establish next-level
oblectives, constraints,

alternatives

7 Review, commitment
4 Evoluate product

and process
alternatives
Resolve risks

5 Define next level of product
and process - including partitions

Figure 1. Wzn Win spzral model

Covers Addresses

Figure 2. Win Win negotiation nzodel.

scrapped due to performance prob-
lems.

+ l ’he init ial design of t h e
hRPANet Interface Message Processor
software - which was fortunately
revised - focused on performance a t
the expense of evolvability through the
design of an extremely t ight inner

Because i t had an expert review
team, the ARPANet problem was iden-
tified early and thus avoided. However,
there is an overall scarcity of such soft-
ware expertise. It would be valuable to
capture the expertise that does exist
and make i t more broadly available
through automated aids that analyze
conflicts among sof tware - qua 1 i ty
attributes.

VJe have developed an initial ver-
s ion of such an aid. T h e Qual i ty
Attribute Risk and Conflict Consultant
is a knowledge-based tool that can be
used early in the life cycle to identify
potential conflicts. QARCC operates
in the context of the W i n W i n sys-
tem,’.‘ a groupware support system
developed a t t h e U S C C e n t e r for

loop.

Software Engineering to determine
software and system requirements as
negotiated win conditions. Q-kRCC
works by examining qualip-attribute
tradeoffs involved in softv-are architec-
ture and process strategies. It may tell
you, for example, that a layered archi-
tecture will improve portability, but
usually a t some cost in performance.

This article suniniarizes our experi-
ences developing the Q-kRCC-1 pro-
to type us ing an early \-ersion of
Vrin\T7in, and our integration of the
resulting improvnients into QAIRCC-
2 . In some cases, t e rminology has
changed in the n e x T-ersion; these are
noted where appropriate.

THE WINWIN SYSTEM

T o r e so 1v e qua 1 i t y - r e q u i r e in e n t
conflicts, you must a t least be able to

4 identify and negotiate quality-
attr ibute re quire in en t conflicts and
tradeoffs and

4 diagnose quality attribute con-
flicts on the basis of early information.

TAre use the TT’inTTh system to pro-
vide tlie first capahili?: For the second
capability, the QARCC tool operates
on the win conditions captured by the
WinWin system to diagnose potential
quality conflicts and tradeoffs among
requirements early in the development
process.

Figure 1 shon-s the MTinWin spiral
model, which serves as the basis for tlie
n T i n W i n system. T h e system uses
T h e o q W’ to generate the objectives,
constraints, and alternatives needed by
the spiral model. T o meet its goal of
“making everyone a xinner,” Theory

W involves stakeholders in a process of
identifying their quality-attribute win
conditions (sector 2 in Figure I) and
reconciling conflicts among quality-
attribute win conditions (sector 3).

Figure 2 shows the WinWin nego-
tiation model’s primary schemas and
the re la t ions among them. Stake-
holders begin by entering their win
conditions, using a schema provided by
t h e Winl;liin sys tem. If a conf l ic t
among stakeholders’ win conditions is
determined, an issue schei7za is com-
posed, summarizing the conflict and
the win conditions it involves.

For each issue, stakeholders prepare
candidate option schenzas addressing the
issue. Stakeholders then evaluate the
options, iterate some, agree to reject
others, and ultimately converge on a
in u t u a 11 y s a ti s fa c t o r y o p t i o 11. T h e
adoption of this option is formally pro-
posed and ratified by an agreenzent
schema, which includes a check t o
ensure that the stakeholders’ iterated
win conditions are indeed covered by
tlie agreement.

In large systems involving several
dozen or more win conditions, it is dif-
ficult to identify conflicts among them.
T o aid in manual and automated coil-
fl i c t as s es sni en t , the win -condition
schema includes a slot for associating
the win condition with elements of a
taxonomy for the system domain.

WinWin also provides - and lets
s t alte h o 1 der s t ai 1 o r ~ domain tax -
onomies. Figure 3 shows an example
for the software-engineering environ-
ment domain. T h e SEE domain taxoii-
only includes a “domain elements” sec-
tion in the center and two relatively
domaiii-independent parts: the infra-
structure on the left and the attributes
on the right. It is this attribute struc-
tu re tha t t he QARCC tool uses to
identify potential quality-attribute con-
flicts among win conditions.

For each win condition that identi-
fies a desired quality attr ibute, t he
QARCC tool uses a knowledge base to
identify software a rch i tec ture and

M A R C H 1 9 9 6

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

\
ts n
n ture)

/ \

~ Assurance

t t ~~ ~

Directly-concerns Contrbutes-to Positively/negatively influences

F i p r e 4. QARCC knowledge-base s tmctwe.

process strategies for achieving the
quality attribute. For each strategy, it
uses another part of its knowledge base
to identify potential conflicts with
other quality attributes that could arise
if the strategy were employcd. It then
provides sugges t ions abou t these
potential quality-attribute conflicts and
options for resolving them.

QARCC KNOWLEDGE BASE

T h e context and information avail-
ab 1 e for an a 1 y zi n g qua 1 i t y - a t t r i 11 u t e
risks and conflicts early in the life cycle
conies primarily from the prioritized

requirements, as expressed by different
system stakeholders’ win-condition
schemas. Overall, customers’ primary
concerns tend to focus on such attrib-
utes as cost and schedule, while users
tend to be more directly concerned
about such attributes as performance
and assurance.

As the left side of Figure 4 shows,
the Struchire of the stakeholders’ first-
o rder interests forms a par t of the
QARCC knowledge base, which
includes a quality-attribute hierarchy
similar to those in previous analyses.’-6
T h e major difference here is that our
hierarchy’s highest level is connected
to the quality attributes most directly

valued hy the various classes of stake-
holders. For example, a maintainer
tends to be primarily concerned with
evolvability aiid portability and oiily
secondarily concerned with develc’p-
inent cost, schedule, and reusability,
which teiid to be primary concerns of
customers and devclopers. This struc-
ture cnables QARCC to associate qual-
ity-attribute risks and conflicts with the
appropriate stakeholders. It thus flags
potential concerns and provides stake-
holders with advicc for resolving them.

T h e other major component of the
QARCC knowledge base, shown on
the right of Figure 4, is a set of rela-
tionships between software architex-

I E E E S O F T W A R E

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

Maintainer Developer Customer General public lnteroperator User

. ,
Directly
concerns

Assurance I nteropya bi I ity Usyh I ity Per

Interface
to

Reliability/ ’ ’
accuracy,

Security/ \ \ Architecture Element
‘\ ,, balance performance

‘,, \, ‘, \ Development Key ‘\ timeliness development
-\

\,
Correctness / Safety Mission Controllability Verifiability \, Maintainability/ Personnel

I \ orientation \ \ debuggability

Availability,’ Integrity Comprehensiveness Scalability 1 Expandability
survivability I

Flexibility Modifiability

ture and process strategies and their
usual effects o n quality a t t r ibutes .
For example, a layered architecture
has a positive influence on portabili-
ty because a Sayer can hide platform
d e p e n d e n c i e s ; i t h a s a n e g a t i v e
i n flu e 11 c e on p e r fo rniaii c e because
in - 1 in e in a c h i n e - d e p end en t cod e is
usually more efficient. T ~ L ~ s , using a
l a y e r e d a r c h i t e c t u r e s t r a t e g y t o
achieve portabi l i ty will f requent ly
cause a conflict with performance
objectives.

MAJOR COMPONENTS
AND RELATIONS

T h e most frequent stakeholders are
users, customers, developers, maintain-
ers, interfiacers, and the general public.
Others could be product-line maw
age r s , t e s t e r s , o r subcont rac tors .
Complex systems inay hare sereral dif-
ferent sets of users and customers.

First -order stake holder interests. i Tve
determined the pniiian -attribute M in

i’ IDENTlFYlNG QUALITY REQUIREMENTS: A COMPARISON

conditions for each stakeholder role
through our experience in applying
T h e o r y IV t o complex, multistake-
holder projects such as Army WWM-
CCS Inforniation System, STARS, and
the TVinWin system itself. Figure 5
diagrams how we mapped the stake-
holders’ primary concerns to quality
attributes. At the top of Figure 5 are
the stake h o 1 der s and their p i i mary
requirements. Second-order stakehold-
er interests are also important (the
developer cares about usability because

One initial qproach to
specifying quality attributes
was the Requireinents-
Properties Mmix ’ It pro-
vided a crowimpact matrix
between the software fimc-
tional requirements a i d the
required properties or attrih-
utes, which qerved as a inan-
ual framework for identifj-
ing derived functional
requirernents iniplied by the
attribute requirements
Several of the Roinc
Laboratory Quality Metrics
reports - such a5 the one by
James A4cCall and his col-
leagues’ ~ provided check-
lists of attribute capabilities
to be considered Jn require-
ments specifications, but did
not address automated con-
flict analysis. A later Konie-
sponsored study by Do~iglas
Schaus developed a traine-

work for an autoinated assis-
tant for specifving quality
software.’

Tom Gilb provides a
framework for finding and
specifying desired attribute
levels in terins of solution
specification, tagging, hier-
archies, modularization, anti
cross-referencing, but no
resolution aids are proT-ided.’
Steve Easterbrook provides a
good conceptual frameu ork
for conflict resolution
between doniain descriptions
with coiiil.’uter-supported
negotiation.’ He also pro-
vides an approach for resoh -
ing conflicts between differ-
ent domain specifications,
and provides an example
using a library iiiforniation-
system specification.
Lawrence Chung and his
colleagues provide a good

s!-stem framen-ork for
increasing traceability of
quality attributes mhen
chaqes in quality attributes
or their importance, or
design decisions and ratio-
nale, occur during the devel-
opment proces6 The sys-
tem draw on domain
knon-ledge to aid in assessing
quality attributes, whereas
our approach is dornain-
independent (although tai-
lorable to specific domains).

l e a p e s proT-ide a fiue-step
inethod for analyzing soft-
ware architechires 111- analyz-
ing three separate user-inter-
face architectures with
respect to the qirality of
niodifiability.’ They use rep-
resentative operations to
analyze the relationship
hetu een sofnvare architec-

Rick I<azman and his col-

tures and quality attributes,
hut leave open the question
of the sufficiency of the rep-
resentative operations.
Kaman and Lei1 Bass
explore the relationship
between architectural “unit
operations” and a method
for deriving software archi-
tectures from eight quality-
attribute requirements.8
They provide a useful first-
order conflict analysis of the
interaction between the
eight attributes, which we
have used and extended in
our analyses. However, their
method of deriving architec-
hKeS from requirenients is
somewhat oversimplified.
Our assessment is that find-
ing the right balance among
conflicting quality attributes
is too complex for simple
algorithms, and that provid-

M A R C H 1996

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

the user does), but these are generally
addrcssed by negotiating first-order
stakeholder win conditions.

Attribute elaboration. T h e lower set of
arrows in Figure 5 show the next level
of detail in the hierarchy. As the figure
shows, the assurance attribute, which is
a primary coiicerii of users and the
general public, m a p have several subat-
tributes.

In inaiiy cases, it is sufficient to rea-
son about attribute conflicts at the pri-
inary attribute level, but the lower lev-
els are important at times - such as
when conflicts arise between fault-tol-
erance data distribution for availability
and restricted data access for security.

Strategy-attribute relations. Table I
shows the genera l set o f quali ty-
attribute strategies in the knowledge
base, o r g a n i m d i n t o p roduc t and

ing options and suggestions
for stakeholders and archi-
tects i s likely to have a high-
er payoff.

The object-oriented
design patterns developed by
Erich Garnina and his col-
leagues provide atiditional
candidate-attri bute strate-
gies, particularly in the areas
of evolvability/portability,
interoperability, and
reusability.” We are analyz-
ing these to capture exteii-
sions to the QARCC knowl-
edge base. Like our
WinWin and QiZRCC: sys-
tem, William Robinson and
Stcvc Ficltas provide a model
and a tool (callcd “Oz”) that
detects and resolves con-
flicts, and provides an inter-
active rcsolutioii-choice pro-
cedure and records of the
negotiation process.’” Their

process strategies. W e de ter mined
these strategies as a result of reviewing
and filtering numerous studies of indi-
vidual and multiple quality attributes.

Table 2 shows the elaboration of
several architecture-based strategies for
itiiproviiig quality attributes, including
top-level assessments of their effect on
other quality attributes. For example,
the input-checking strategy applies to
several assurance subattributes, such as
invalid data checking for reliability and
unauthorized-access checking for secu-
rity. Input checking also reinforces
interoperability through validity and
access checlung across system interfaces.
It reinforces usability by providing rapid
feedback on invalid user inputs. O n the
other hand, the input-checking activi-
ties requirc additional code, inernory,
and execution cycles, and thus may con-
flict with the cost/schedule and perfor-
mance attributes.

approach requires a domain-
dependent knowledge base
covering very detailed-level
conflicts (such as conflicts of
loan period in a library’s
ten1 requirements). In con-
trast, our approach focuses
on domairi-independent
conflicts involving high-level
quality-attribute and arclii-
tecture-strategy conflicts to
achieve generality and scala-
bility. A related and widely
used approach for reconcil-
ing quality attributes is qual-
ityfunctioii deploymeiit.’ ’ It
is a largely manual approach
for which QARCC can pro-
vide coinpleinentary auto-
inateti support.

REFERENCES
1 . 1%. H~~elinn, “Some Steps TOM ard

F(irnial and :\titoinad Aid\ tu
Sofm are Iieqniremcnts Analysis

Elaboration o f attribute architecture
strategies. We are developing a foriiial
s t ruc ture for t h e quali ty-attr ibute
architecture strategies summarized iii

Table 2. It is currently composed of a
dejinztzon for each elementary strategy,
precondztzonr to check whether or riot
the environment5 or situations are d i -
gible for applying the strategies, po\f-
cmzditzons to describe the results o r
actions after applying the strategies,
effect\ on quality attributes with ratio-
nale, and optzoizc for resolving quality-
attribute conflicts.

Figure 6 shows the struchire of ele-
men tary arc hi t e c t u r e s t r a t e gi e s ib r
quality attributes; Figure 7 shows three
examples. T h e p~*e~07idztzons for the
input-acceptability-check strategy ,ire
sets of candidate inputs and acceptatill-
ity c r i t e r ~ ~ ~ As the figure shows, the
efecr on assurance is positive, while 1 he
effects on performance, cost, schedule,

and Design,” Pmc. 11:11’ 74.
Sdi Hollmd, Atnsterdam,
1974, pp, 192-197.

General Electric Commantl and
Information System, S u n n y a l e ,
Calif., 1977.

3 . L). Schaus, “-\sGstant for Specify
ing Quality Softuwe (:\SUS)
Mission Analysis,” k\D(:-TR-
90-348, Rome Laboratory,
1ioIIle, N.Y., Tiec. iom.

1088.

5. S. Easterhi-ook. “IIandIing Con-
f l ict Renvcen Uiimain Ueucrip-
tioni with Coiinl~tit~r-Stt~~~”,ned
Ncptiation,” K7iumleilge Acqiisi-
tion, Mar. 1991, pp. 2S5-289.

6. L. Chung, U . Nixin, and E. Yu,
“Lsing Son-I~unctional Require-

Rcquiremeiits big., T
Press, T,o\ -\lannit(iu, C;alif., 1 9Oj,

I E E E S O F T W A R E

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

Attribute

Assurance

Product Strategies

Accuracy optimization, backup/recover);
diagnostics, error-reducing user inputloutput
fault-tolerance functions, input checking,
instrumentation, integrity functions, intrusion
detection and handling, layering, modularity,
monitoring and control, redundancy.

Iiiteroperabilitj

Usability

Performance

Evolvat)ility/
Portability

CosdSchedule

Reusability

All of Above

Distributability, generalitv, integrin functions,
interface specification, lavering, inodulariq ,
self-containedness

Distributability (groupm are), error-reducing user
inputloutput, help/explanation, modularin,
navigation, U1 consistency, U1 tlexlbiliq, undo,
user-programniabili~~, user-tailoring

,4rchitechiie balance, descoping, distributabilig ,
domain archltecture-dri.i.en, faster hardv are,
instrumentation, optiinization (code/algorithm),
parallelism, pipeliiiing, platform-feature exploitation

Distributability, generdlitv, input assertlodope
clieclung, layering, modularin,, self-containedness,
understandability, user-programmability, user-
tailorability, verifiability, \ isibility functions.

Architecture balance, descoplng, domain
architecture-driven, modulaiity, reuse

~

Domain architecture-drn en, portabilig functioni.

~~

Descoping, domain architecture-driven, reuse
(if strong nit11 regard to attribute)

aiid evolvability are negative.
W e followed six steps for building

thc knowledge base for tlie sti-ategy-
attribute relations and quality-attribute
strategies:

1. Identify primitive qmlity-attribute
strategies. 'Table 1 summarizes the cui--
rent working set of strategies.

2. For each identified strategy, ana-
lyze the effects on each of tlie other pri-
mary quality attriliutes as positive (+)
or negative (-). For any pair of strate-
gies with tlie same + and - pattern,
combine them if they are sufficiently
synonyn1ous.

Process Strategies

Failure modes and effects aiialy
analysis, formal specificati
inspections, penetrauon, regres
requireinents/design verificatlo

~~~ ~~ 

stress testing, test plans and tools. 

~~~ ~~ 

Interface change control, interfa
interface testing and analysis, in
imoh ement, specification verifi

Prototping, usage monitoring a
~~~ 

user engineering, user-interface tools, 
user involvement 

~~~ ~~~ ~ 

Benchmarhng, modeling, performance a
protomping, simulation, tuning, user involvemeii

Benchmarhng, maintainer and user invol
portability-evolution-vector specification,
prototyping, requirement-evolution-vector
specification and verification.

Design to costlschedule, early error-elim
tools and techniques, personnel/inanageinent,
process automanon, reuse-oriented processes,
user and customer involvement.

Domain architecturing, reuser iiivolvemcnt,
reuse-evolution-vector specification aiid
'i erification.

~ ~~~~ ~~~ ~~

Aulalvsis, continuous process improvement,
iiicentix iLation, inspections, personnel/
management focus, planning focus, requirements/
design validation and verification, review emphases,
tool focus, total quality niaiiagemeiit

3. Define the pi-rcoiidztioiis
coizditioiis invoked in applving _ _ . d

ityattrihute strategies. These sharpen
the strategy definitions, help validate
the + a i d - assignments, and help ideii-
ti@ inore complex interactions.

4. Elabora te t h e m o r e complex
strategy-attribute relations (not just
positive/ negative). For example, the
mon i to r ing and cont ro l s t ra tegy
improves assurance at the cost of iiear-
term performance, hu t also collects
performance data supporting long-term
performance improvement via tuning.

5. Formulate options to resolve the

and post-
the qual-

ident i f ied conflicts a m o n g qual i ty
attributes. Performance tuning is one
exaruple.

rience.
6. Update strategies based on expe-

QARCC OVERVIEW

Figure 8 shows the QARCC concept
of operation for identifying potential
quality-attribute conflicts, flagging
thein for affected stakeholders, and sug-
gesting options to resolve the conflicts.

QARCC is triggered by a staltehold-

M A R C H 1996

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

Primary Architecture
Attribute Strategy

Asurance Input checlung

Redundancy

Backup/recovery

Monitoring
and control

~

Inter- Input checking
operability

Evolvabil ity
/portability Layering

Modularity
(platforin-
dependent functions)

OtherAttribute OtherAttribute Special Cases/
Reinforcement Conflicts Comments

Interoperabillty, usability Cosdschedule performance

CostYschedule, evolvability,
performance, usability

Cosdschedule, evolvability
performance

Cosdschedule, Long-tcrm performance
performance enforcement via tuning

~~ ~ ~~ ~ ~~ ~~ ~~

~~~ ~~~ ~~ ~~~ ~ ~~~~~ ~~ ~ 

Assurance, usability Cosdschedule, performance 

In teroperability, Cost/schedule, performance 
reusability 

Reusability, usability Cosdschedule, performance 
~~~ ~ ~~~~ ~ ~~ 

(displays)

< d e f i n i t i o n > = [< d i a g r a r n >] D e L i n L t ~ on <string>

[Pros <st r i n g >]

P o r t a b i l i t y 1 Coit h S c h e d u l e 1 R e u s a b i l i t y .

Figzcve 6. The . s t i u C t u w ojelementaiy archztectuw strutegzes jbv qunlzty attt~zbutes.

er entering a new win condition with a
quality-attribute taxonomy element.
Figure 9 shows screendurnps f rom
QARCC-1. For the attribute of porta-
bility in screen A, QAKCC first consid-
ers its product and process stratcgies as
given in Table I (such as layering to
achieve portability). It then examines
these strategies to search for potential
conflicts with other attributes.

QARCC: determines these potential
conflicts from the portion of its knowl-
edge base suininarized in Table 2. For
example, layering produces likely con-
flicts with cost/schedule a i d perfor-
mance. (In QARCC-1, cost and sched-
ule wcre combined under “developmcnt
affordability” and performance was

I E E E S O F T W A R E

called “efficiency.”) ’These are shown in
the “potential conflict list” in screen B
of Figure 9.

QARCC then uses the relationships
shown in Figure -5 to identify the stake-
holders affected by these potential con-
flicts (developer and cmtoiiier for cost
and schedule; user and customer for per-
formance). Fo r these stakeholders,
QARCC pops up the “conflict advisor
note” window (screen €3) with the poten-
tial conflicts list generated by the new
win condition. T h e list also enumerates
any existing stakeholder win conditions
that have conflicted attributes in their
“taxonomy elements” slot. If no such
win conditions exist, a “missing win coil-
dition” message is shown. For example,

in screen B, development affordability
has two existing win conditions -
hohin-winc-5 and hohin-winc-9 - but
assuraiice and usability have none.

T h e stakeholder can select affected
win conditions with the mouse and then
click on the create i .me button to have
QARCC draft an issue schema shown in
screen C. If 110 affected win conditions
exist, the stakeholder can click on the
Cxate WinC button to have QARCC
draft a win-condition schema, shown in
screen D.

An example of the draft material pro-
duced by Q A R C C is shown in the
Other’s Comments field of screen C,
which cautions the stakeholders that
affordability strategies such as reuse will

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

+Output

Invalid input+J
Definition:

Preconditions:

Postconditions:

Effects on Quality attributes:

An architectural composition that precedes a function by an acceptability check of its inputs

Candidate inputs, acceptability criteria

If valid, pass input into the Function, otherwise, indicate "Invalid Input" and exit

* Assurance (+) filters out unacceptable inputs
Performance (-) input-check requires resources

Cost, Schedule () more to specify, develop, and verify
Evolvability (-) more to modify

Layer 111
[AI

J i '+ Layer 11
\ / Layer I

Definition:

Preconditions:

Postconditions:

Effects on Quality attributes:

A hierarchical architectural composition in which each layer can communicate only with the adlacent upwards or downwards layer

Interface and protocol between a layer and an adlacent layer, request to pass data and/or control from layer to layer

Data and/or control passed from layer to layer, or notification of interface/protocol violation

Evolvability, Interoperability, Portability) Reusability (+) hides sources of variation inside interface layers
Performance (-) requires more interfaces and data and/or control transfers via protocol

* Cost, Schedule () more to specify, develop, and verify, can reduce integration cost and schedule

[BI
Input -

onitoring - Performance analysls
Definition:

the function (for example, to avoid buffer overflows), and/or reports the result for subsequent performance analysis
Preconditions:

Postconditions:

Effects on Quality attributes:
Assurance (+) avoids undesirable states
Performance () requires additional processing in short term, (+) improves performonce in long term via system tuning
Cost, Schedule (-) more to specify, develop, and verify

[Cl

An architectural composition that monitors the performance of function, controls the configuration or environment to stabilize

Monitoring instrumentation, control limits and algorithms

If the function is stable, checks the performance and reports it, otherwise stabilizes the function by controlling the configuration or environment

7
Figure 7. T h r e e exawple.7 o f p ~ z m z t z v e giinlityattidmte n i zh i t e r t i i~~ l stmtegzes. (A) znput-acceptahlzty check, (B) layemzg, a n d
(C) ???oYImT?zg

coiiflict with the portability win condi-
tion i f the reused software is n o t
portable.

For each attribute
strategy identified,

negative effects on
other attributes

akeholders enter win By clicking the Optzom button at die - determine likely bottom of screen C, the stakeholder can
have QARCC draft a set of candidate
resolution optioiis. As the left window

Figure 8. QARCC concept o f opemtion.

in screen E Shows, the QARCC knowl-
edge base generated six opt ions to
resolve the conflict between develop-
ment affordability and portability:

+ reduce or defer product hnctions;
+ find, incorporate some relevant

+ find, engage expert performers;
+ use design-to-cost process and

identify lower priority features to defer
if necessary;

+ relax constraints on schedule,

reusable software;

M A R C H 1996

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

Win-Condition 7

~~

N-,"le &c.,rr Wakeholder

'1'0 : Developer, Customer. User. Maiatainer. intemperntor
S t h j d Pot.,,fial curxflist h m m l,d,i,,-,,~"~-li

The t iex, win condition (hahin-winc-ll)
~ EntercdIxy. hohin (User)
-On Attribute : Portability

resitlk in the following potential conflicts.

...............

\
/1 Conf lict/Ris k/Un certa in ty \

!?!%::

i COCO..," I Cnnccl I

Figwe 9. An exumple of the izztznl zmplementatzoz of'QARCC.

I E E E S O F T W A R E

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

Found, Not found Found,
by QARCC significant insignificant

Conflicts found in
WinWin user exercise 0

Conflicts not found
in WinWin user exercise 0

per formance , hardware, and o the r
attributes; or

+ use better tools and practices.
As t h e opt ions a re genera l ized ,

stakeholders can tailor them to their
special situations. QARCC also drafts
pros and cons for the options (right
window in screen E), he lp ing t h e
stakeholders evaluate the options and
converge on ;I mutually satisf,actory
(win-win) option.

EXPERIMENTAL RESULTS

QARCC-I has been applied to sever-
al sample projects, primarily in satellite
ground stations. I n the experiment
described here, we applied QARCC
retroactively to the win conditions for a
representative SEE to support a satellite-
ground-station product line. T h e repre-
sentative developer was a workstation
vendor’s CASE division, die representa-
tive user was a large aerospace ground-
systems division, and the representative
customer was the hypothetical US Space
Systems and Operations Command.

T h e mu 1 ti stake 11 o 1 de I- W i n Wi n
exercise generated 2 1 win conditions,
including the following quality-relat-
ed conditions:

+ Ini t ia l opera t iona l capabili ty
(IOC) cost less than $7 million

+ Full 1OC delivery schedule with-
in 25 months

+ Interoperable SEE functions and
tools

+ Low development risk
+ Low maintenance cost; easy to

2 0

> 3

111 odi fy
+ C om in er ci a li za b 1 e in i d d 1 ex7 ar e

and commercially supported SEE to
improve evolvability

+ Broadly applicable across product
line to improve eYoi.\-ability

T h e main objective of the 14‘inJVin
exercise was to determine the ability of
TVinT4’in to support renegotiation of a
new win - i n e q u i 1 i b r i u m so lu t ion
when a new win condition was added
to the base of 2 1 in-equilibrium win
conditions. T h e new win condition,
“support the development of multi-
mission satell i te ground s ta t ions,”
caused a cost and schedule conflict
with the previousll- negotiated equilib-
rium. After determining that VhTVin
could successfull!- support such a rene-
go t ia t ion , ’ we dec ided to apply
QARCC to the body of win conditions
to see how- many potential conflicts it
would identify.

First, we wanted to see if QARCC
would identi+ the two conflicts used in
the renegotiation process. These Tr-ere
conflicts of cost/schedule with evolv-
ability and interoperability: T h e stake-
ho lders had re jec ted a n op t ion t o
recover cost and schedule by reusing
legacy software that was deficient in
evo lva b i 1 i ty an d in t e r o p e r a b i li ty .
Second, we wanted to see if QARCC
would identify o ther potential con-
flicts, and if so, how many of thein
would have significant rele\-ance to the
satellite-ground-station system.

T h e results are shown in Table 3.
QARCC found the two significant
conflicts identified in the VC’inWTn

exercise. It also found e ight niore
potential conflicts. Five of these were
considered significant in the satellite-
ground-station situation: conflicts of
cost/schedule with assurance, perfor-
mance, and reusability; and conflicts of
interoperability and evolvability with
performance. The conflicts not consid-
ered significant were those of evolv-
ability with assurance and usability,
and a conflict of cost/schedule with
usability. W e are reviewing these three
“false alarm” situations to determine if
the potential-conflict threshold for
them was set too low for other situa-
tions as well. If so, we plan to drop
them as being more time-consuming
than beneficial.

rom our initial experimentation,
we concluded that QARCC can

rt users, developers, customers, and
other stakeholders to conflicts among
their software-quality requirements
and can help them identify additional,
potentially important quality require-
ments . W e also concluded t h a t
QARCC needs further refinement to
avoid overloading users with insignifi-
cant quality-conflict suggestions. W e
are now refining the knowledge base to
address more detailed quality attributes
in a more selective fashion.

In our discussions with USC-CSE’s
industry and government affiliates who
p a r t i ci p a t e d i n d e m o ns t r a t i o n s of
QARCC-1, there was a strong coiiseii-
sus that it provided a useful framework
fo r s takeholders t o systematically
resolve software quality-attribute con-
flicts. They also agreed that the semi-
automated approach provided a good
way to balance human skills and coin-
puter tools in addressing quality-trade-
off issues.

In our development and experimen-
tation with QmCC-2, we are hoping
to show that the QAxCC approach is
also scalable t o large systems wi th
many quality conflicts and that the
effectiveness of the QARCC approa
is largely domain-independent.

M A R C H 1996

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS
This research is sponsored by the Advanced Research Projects Agency
through lloine 1~ahol.atory under contract F30602-94-C-0195 aiid hy the

eiiter fur Software Engineering: rierospace
urce Cost Analysis Agency, A T & T Bell Laboratories,

Bellcore, G ~ m ~ i u t c r Science Corporati~n, Defense Information Systems
Agency, E-Systems/RaytIic~,n, Electronic Data Systems, H ~ i g l i c ~ Aircraft,
Institute for lIefcn\c fhalysis, Interactive Dcvclopinent Envii-onments, Jet
Propulsion Lalxnitory, 1,itton Data Systems, I,ockheed/&lartin, Lord
Federal Sy\tcmc, MC<: Inc., Motorola, Northrop Gmminan Corporation,
Rational Siiftware, Rockwell Intermational, Science Applications International,
Suftw are Engineering Institute, Software Productivity Consortium, Sun
h~ici-o\y\tcnh, ’l‘exas Iiistrunicnt~, -TKRT Inc., us Air Force Rome
Laliimitory, us k i n y Research Labm‘atory, and Xerox Corporation.

REFERENCES
1. B. Bochin et ai., “Softvare kquircments hs Kegotiatcd M’in

(:oiiditions,” I’/YJc. Firv lizt’l Conf Kequiremena E n g , IEEE CS Press, Lo5
Alatni~os, Calif., 1994, pp. 74-83.

2 . B. noehm et al., “Software Requirements Negotiation and Renegotiatloii
Based Spiral Approach,” Proc. 17th lnt’l CO?$ Snfmxwe
ss, Los hlamitos. Calif., 1995, pp. 243-253.

3 . R. R i d i m . and K. Koss, “Theory W Software Project ,Managcmcnt:
I’ri tici p I cs and Examples,”
9 16.

4. V. R‘isil i and 11. Koinhach, “Tailoring the Software Process to Project
(;oak and Eiivironinent~,” P m . 9th ht’l Cui$ Sujhuare Eqq., IEEE CS

Tu/L. St$wnrc Eng.,JuIy 1989, pp. 902-

Software ’l‘ech. Report TRIV-SS-73-00, ’1‘1IW Systcins and Energy,
Inc., Redondo Bench, Calif., 1973.

6. J. M c C d I , P. llichards, and G. R’dters, “Factors in Software yuality,”
Tech. Report 77ClS02, Ceneral Electric Command & Inforination
Systems, Suiiiiyvale, Calif., 1977.

Barry Boehm is the ’I‘KLL’ Professor of Software
Engineering and Director of the Center for
Engineering a t the UniLersity of Southcii (
His curreiit research involves the WinWin group=-are
system for software requirciiiciirs negotiation, architcc-
ture-based ni(idels of software quality attributes, and
the Cocoino 2.0 cost-estimation model.

University and an lVIS and PhD in mathematics froin
Roehin received a BA in inatlieinatics from Hamiard

Hoh In is a PhD strident at the Center for Software
hgineering at USC. His research interebtb are in qual-
ity coiiflict resolution, including knonledge-based soft-
\\ are reqtiireineiits engineering, software architecture,
design patterns, and software inetrics aiid cost-estiiiia-
tiun inodcls.

Hoh rcceivcd a US and an MS i n computer science
from Korea University and won prizes for papers from
the Korcaii Information Society and the Korean
Academy Promotion Foundation.

Address questions about this article to Boehm or In a t the Ceiiter for Software
Engineering, US(:, Los r\ngeies, Calif. 90089-078 1; boehin@sunset.usc.edu or
hohin@sunset.usc.edu. Additional information is available a t
http://suiiset.usc.edu.

I E E E S O F T W A R E

CALL FOR PAPERS

&
Third IEEE International Symposium on

Requirements Engineering
January 5-8, 1997 Annapolis, Maryland, USA

The 1997 symposium will be held in four exquisite 18th-century
inns clustered in the beautiful colonial scaport of Annapolis on
the scenic shores of Chesapeake Bay. It will bring together
researchers and practitioners for an exchange of ideas and
experiences. The program will consist of invited talks, paper
presentations, panels, tutorials, working groups, demonstrations,
and a doctoral consortium. The program will also includc a
parallel industrial track with presentations on industry problcins
and experiences, transferable technology, and commercial tools.

Papers describing original research in requirements cnginccrinj;
arc invited. Symposium organizers extend a special invitation for
paper submission and participation to rcscarchcrs and practitio-
ners working in high assurance, safety-critical and mission-
critical systems, and formal approaches to requircmcnts.

Authors should submit six (6) copies of each full paper (no
cmail or FAX) to the Program Chair. Papers must not cxcced
6000 words and must be accompanied by full contact infonna-
tion including name, address, cmail address, and telephone and
FAX numbers. Authors should also submit the title, abstract, and
classifications of each paper by email to the Program Chair a
month before the paper is due along with full contact informa-
tion. All papers must be classified according to the symposium
classification scheme. For a full call for papers, including the
classification scheme, contact the Program Chair, use anonymous
FTP from cs.toronto.edu (/distfISRE97/CFP), or sec the WWW
page at http://www.itd.nrl.navy,mil/conf/ISRE97. Developers or
researchers wishing to present in the industrial track should
submit an abstract to the Industrial Chair. Students intcrcskd in
presenting at the doctoral consortium should send an extended
abstract to the Doctoral Consortium Chair by Sept. 15, 1996.

IMPORTANT DATES:
April 1, 1996: Title, abstract, and classifications due
May 1, 1996: Full papers, industry abstracts due
July 1, 1996: Notification of acceptance
September 1, 1996: Camera-ready copy due

FOR MORE INFORMATION, CONTACT:
Connie Heitmeyer, General Chair

John Mylopoulos, Program Chair

Code 5546, Naval Research Lab, Wash., DC 20375
+I-202-767-3596; heitmeyer@itd.nrl.navy.mil

Dept. Computer Sci., Univ. of Toronto, 6 King’s College
Rd., Rm 283, Toronto, Ontario Canada M5S 3H5
+1-416-976-5180; fax +1-416-978-1455
jm Qcs.toronto.edu

Stuart Faulk, Industrial Chair
Kaman Sciences; +I -202-404-6292
faulkQ itd.nrl.navy.mil

Myla Archer, Doctoral Consortium Chair
Naval Research Lab; +1-202-404-6304
archerQitd.nrl.navy.mil

Sponsored by

C ~ ~ P U T E R SOCIETY
5 0 Y E A R S OFSERVICE - 1 9 4 6 - 1 9 9 6

IEEE Computer Society TC on Software Engineering
In cooperation with

ACM SIGSOFT, IFlP WG 2.9 (Software Requirements)

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore. Restrictions apply.

mailto:boehin@sunset.usc.edu
mailto:hohin@sunset.usc.edu
http://suiiset.usc.edu
http://cs.toronto.edu
http://www.itd.nrl.navy,mil/conf/ISRE97
mailto:heitmeyer@itd.nrl.navy.mil
http://Qcs.toronto.edu
http://itd.nrl.navy.mil
http://archerQitd.nrl.navy.mil

