
OVERFLOW
When adding numbers together using the 2's complement notation:
Add the numbers together in the usual way as if they are just normal binary numbers. When
dealing with 2's complement, any bit pattern that has a sign bit of zero in other words, a positive
number) is just the same as a normal binary number (you don't need to convert it back out of 2's
complement in any way, just convert it straight into decimal as you would convert a normal binary
number).If, on the other hand, the sign bit is 1, this means that the corresponding decimal number
is negative, and the bit pattern needs to be converted out of 2's complement before you can
convert it from binary into decimal.Look at the 2's complement tables below; notice how all
numbers from zero upwards are exactly the same as the usual binary representation for each
value. Only the negative values (i.e. all those bit patterns starting with a 1) do not correspond to
the usual binary representation, so they have to be converted from 2's complement notation into
normal binary before we can then convert them from binary to decimal. Two's complement
using patterns of length 3 and 4 are:

Bit pattern Value represented
0111 7
0110 6
0101 5
0100 4
0011 3
0010 2
0001 1
0000 0
1111 -1
1110 -2
1101 -3
1100 -4
1011 -5
1010 -6
1001 -7
1000 -8

Bit pattern Value represented
011 3
010 2
001 1
000 0
111 -1
110 -2
101 -3
100 -4

If an addition operation produces a result that
exceeds the range of the number system,
overflow is said to occur. In the modular
counting representation shown above, overflow
occurs during the addition of positive numbers
when we count past +7. Addition of two
numbers with different signs can never
produce overflow, but addition of two numbers
of like sign can, as shown by the following
examples

 -3 1101

 -6 1010
+______ +______
 -9 10111 = +7

 +5 0101
 +6 0110
+______ +______
 +11 1011 = -5

 -8 1000
 -8 1000
+______ +______
 -16 10000 = +0

 +7 0111
 +7 0111
+______ +______
 +14 1110 = -2

Fortunately, there is a simple rule for detecting overflow in addition: an addition overflows if the
signs of the addends are the same and the sign of the sum is different from the addend’s sign.
The overflow rule is sometimes state in terms of carries generated during the addition operation:
an addition overflows if the carry bits cin into and cout of the sign position are different.

Overflow Detection for Adders
In our discussion of ripple-carry adders, we said that the same adder that adds two k-bit UB
bitstrings also adds two k-bit 2C bitstrings.

That was one advantage of using 2C for signed int representation.

However, detecting overflow is different for the two representations. We look adding additional
logic to the ripple carry adder, which can detect overflow for UB addition and for 2C addition.

Overflow in UB addition

When adding two k-bit bitstrings using UB, you are adding two non-negative numbers. Let's call
these numbers x and y. Since they are non-negative, then x + y >= x and x + y >= y. That is,
adding two non-negative numbers either keeps the value the same, or increases it.

Assuming both x and y are valid 2C bitstrings, then their sum overflows only if the result is larger
than the largest positive integer. For k bits, the maximum value is 2k - 1.

If a sum is larger than that, it overflows. When a sum is larger than 2k - 1, it takes k + 1 bits to
represent the result. So, you can tell overflow just by checking if the carry out of the leftmost
adder (which adds the most significant bits and the carry in) is 1.

Here's how the circuit looks:

The letter "V" is often used to represent the overflow bit. Presumably "O" is not used because it
looks too much like the numeral 0.

Overflow in 2C addition

The condition for overflow is different if the bitstring representation is 2C. In particular, x + y >= x
and x + y >= y are no longer necessarily true.

Here are some facts about overflow in 2C.

• If x and y have opposite signs (one is negative, the other is non-negative), then the sum
will never overflow. Just try it out. The result will either be x or y or somewhere in
between.

• Thus, overflow can only occur when x and y have the same sign.
• One way to detect overflow is to check the sign bit of the sum. If the sign bit of the sum

does not match the sign bit of x and y, then there's overflow. This only makes sense.
• Suppose x and y both have sign bits with value 1. That means, both representations

represent negative numbers. If the sum has sign bit 0, then the result of adding two
negative numbers has resulted in a non-negative result, which is clearly wrong. Overflow
has occurred.

• Suppose x and y both have sign bits with value 0. That means, both
representations represent non-negative numbers. If the sum has sign bit 1, then the
result of adding two non-negative numbers has resulted in a negative result, which
is clearly wrong. Overflow has occurred.

So that would suggest that one way to detect overflow is to look at the sign bits of the two most
signicant bits and compare it to the sum.

Let's derive a formula for this. Let's say we want to add two k bit numbers: xk-1...x0 and yk-1...y0.
The sum is sk-1...s0.

Thus, one formula for detecting overflow is:

 V = xk-1yk-1\sk-1 + \xk-1\yk-1sk-1
This formula basically says that overflow has occurred if the sign bit x and y are 1, and the sign
bit of the sum is 0, or if the sign bit of x and y are 0, and the sign bit of the sum is 1.

A Simpler Formula for Overflow

However, there is an easier formula, though one that is more obscure. Let the carry out of the full
adder adding the least significant bit be called c0. Then, the carry out of the full adder adding the
next least significant bit is c1. Thus, the carry out of the full adder adding the most significant bits
is ck - 1. This assumes that we are adding two k bit numbers.

We can write the formula as:

 V = ck-1 XOR ck-2
This is effectively XORing the carry-in and the carry-out of the leftmost full adder.

Why does this work? The XOR of the carry-in and carry-out differ if there's either a 1 being
carried in, and a 0 being carried out, or if there's a 0 being carried in, and a 1 being carried out.

When does that happen? Let's look at each case:

Case 1: 0 carried in, and 1 carried out

If a 0 is carried, then the only way that 1 can be carried out is if xk-1 = 1 and yk-1 = 1. That way, the
sum is 0, and the carry out is 1. This is the case when you add two negative numbers, but the
result is non-negative.

Case 1: 1 carried in, and 0 carried out

The only way 0 can be carried out if there's a 1 carried in is if xk-1 = 0 and yk-1 = 0. In that case, 0
is carried out, and the sum is 1. This is the case when you add two non-negative numbers and
get a negative result.

The Circuit

Here's the circuit that detects overflow when adding two k-bit numbers represented in 2C.

Notice the XOR gate at the bottom, which is exclusive-ORing the carry-in of the full adder of most
significant bits to the carry-out.

Misconceptions about Overflow

Overflow occurs when you do some operation to two valid representations, and the result can not
be represented in the representation because the value is too large or too smal.

Overflow detection is detecting overflow for a specific representation. Too often people mistake
overflow detection for overflow. Thus, students say "overflow is when the carry out is a 1".
Specific detection of overflow requires knowing the operation and the representatin.

Thus, "overflow is when the carry out is a 1" is only correct when the representation is UB and the
operation is addition. In this case, I claim that this definition is how to detect overflow for UB
addition.

Overflow detection for 2C addition is different. One way to detect it is to XOR the carry-in and the
carry-out. We also discussed another Boolean expression for detecting overflow.

	Overflow Detection for Adders
	Overflow in UB addition
	Overflow in 2C addition
	A Simpler Formula for Overflow
	Case 1: 0 carried in, and 1 carried out
	Case 1: 1 carried in, and 0 carried out
	The Circuit

	Misconceptions about Overflow

