Homework \#1, ECE 340, Fall 2011
Due Tuesday, Sept 6 at the beginning of class

- Textbook 1.1-3
- Textbook 1.1-5 (b) and (d)
- Textbook 1.1-7 (a) and (b)
- Textbook 1.2-2
- Textbook 1.3-3 (a)
- Textbook 1.4-2 (hint: use step functions)
- Textbook 1.4-4 (a), (c), (e), (g)
- Textbook 1.4-10
- Textbook 1.5-11
- Textbook 1.7-1 (a), (c), and (e)
- Textbook 1.7-2
- Textbook 1.7-7
- If the energy in $x(t)$ is E_{x}, show that the energy in $x(a t)$ is E_{x} / a.
- Use Matlab to plot the function shown in Figure P1.4-2(b).
- (a) First, show that a signal of the form $\phi(t)=\sqrt{\frac{2}{T}} \cos \left(2 \pi\left(\frac{k}{T}\right) t\right)$ is "normalized" (in other words, show that the energy $=1$) if k is a non-zero integer and the signal exists only over the interval from 0 to T.
(b) Next, define $\phi_{1}(t)=\sqrt{\frac{2}{T}} \cos \left(2 \pi\left(\frac{1}{T}\right) t\right)$ and $\phi_{2}(t)=\sqrt{\frac{2}{T}} \cos \left(2 \pi\left(\frac{2}{T}\right) t\right)$. Show that $\phi_{1}(t)$ and $\phi_{2}(t)$ are orthogonal over the interval from 0 to T (in other words, show that $\left.\int_{0}^{T} \phi_{1}(t) \phi_{2}(t) d t=0\right)$.
(c) Since $\phi_{1}(t)$ and $\phi_{2}(t)$ are orthogonal and normalized, they are said to form an orthonormal basis for any signals of the form $a \phi_{1}(t)+b \phi_{2}(t)$. If a signal is given by

$$
x(t)=A \cos \left(2 \pi\left(\frac{1}{T}\right) t\right)+B \cos \left(2 \pi\left(\frac{2}{T}\right) t\right) \text { for } 0 \leq t<T
$$

re-write $x(t)$ to be in the form $a \phi_{1}(t)+b \phi_{2}(t)$.
(d) Finally, calculate the projection of $x(t)$ onto the basis function $\phi_{1}(t)$ (i.e., calculate $\left.\int_{0}^{T} x(t) \phi_{1}(t) d t\right)$. Compare the result to the coefficient a that you just found in part (c) above.

