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ECE 340 – Computer Assignment #2 
 

Interpolation and Matched Filtering 
 

Due by 5 pm on Wednesday, Dec. 7 

 

The second computer assignment will explore signal reconstruction and matched filtering. In the 

first part of the project, you will write a script to interpolate a discrete-time signal to a sample 

rate that is L times higher than the input signal. The input signal and interpolation factor will be 

inputs to your program. As a test signal, you will interpolate a common radar waveform called a 

linear frequency modulated (LFM) pulse. In the second part of the project, you will pass this 

signal through a specific type of filter called a matched filter. The matched filter is important 

because it gives the highest possible signal-to-noise ratio (SNR) at the output of the filter. 

 

I will talk you through the steps of the assignment using this handout. You should observe the 

results of your simulations, and you should make (well-labeled) plots to demonstrate important 

details about the project.  Use those observations to prepare a typed report explaining your 

methods and results for each section.  There is not a specific format for the report, but be sure to 

include details that show you did the work and that you understand what is happening. Include 

plots only when they convey something significant.  I will be looking for insight that shows a 

depth of understanding about these experiments.  At a minimum, your report should include an 

introduction describing what the project is about and what the objectives are; a section discussing 

the techniques or methods that you used (including theoretical results if appropriate); a section 

describing your results; and a section with your conclusions.  Any questions that I ask in this 

assignment should be answered, but more importantly these questions are designed to get you 

started in thinking about the assignment.  The best reports will demonstrate analysis and thought 

beyond the basic questions posed in this handout.  Listings of your Matlab code, appropriately 

labeled and commented, should be included. 

 

You should work with one partner and turn in a joint report.  I prefer for everyone to have a 

partner rather than working on your own. Groups may talk to each other about the assignment, 

but all Matlab code and report materials must be the result of your own group’s work.  

Code copied from another group is unacceptable. 

 

Part I:  Interpolation 

 

We have already covered the basics of interpolation in class – the discussion can be found in 

Section 3.2. We know that to increase the sample rate of a signal by a factor of L, we need to 

interpolate L – 1 new samples between every sample that we already have. We also know from 

our discussion of reconstructing continuous-time signals from discrete-time samples that the 

ideal interpolation function is a sinc function (see Section 8.2 of your textbook). If we can use 

the sinc function to interpolate a continuous function of time, then certainly we can also use it to 

interpolate L – 1 new samples to create a higher-rate discrete-time signal. 
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Suppose that a discrete-time signal has been captured by sampling a continuous-time signal at a 

uniform sampling rate of Fs = 1/T. The ideal interpolation formula for reconstructing the 

continuous-time signal is 
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where    sinch t t T . To interpolate a discrete-time signal by a factor of L, we can use this 

interpolation formula evaluated at t = mT + (p/L)T = (m + (p/L))T for p = 1, 2, …, L – 1. For 

example, suppose we would like to increase the sample rate by a factor of L = 4. We already 

have the samples x[0] = x(0) and x[1] = x(T), and we need to interpolate x(t = 0.25T), x(t = 0.5T), 

and x(t = 0.75T). These values correspond to m = 0, p = 1, 2, and 3. Substituting the interpolation 

times into (1), we have 
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As we discussed in class, to implement this interpolation as a filtering operation, we must first 

inject the new values into the sequence as zeros. To do this, define a new input sequence 
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We can re-write (2) using this new input sequence as 

 

 

 

  sinc

n

n

p p n
x m T T x n h m T T T

L L L

p n
x n m

L




 



 

        
           

        

   
   

  





 (4) 

 

Next, we manipulate some of the arguments to obtain 

 

 

 

    sinc

n

n

T T T T T
x m L p x n h m L p n

L L L L L

T m L p n
x m L p x n

L L




 



 

            
                

            

        
       

      





. (5) 

 



 3 

Finally, we define a new sequence variable k = mL + p and the new sampling interval T T L   

to obtain  
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where      sinch n h n T n L     . 

 

Equation (6) is in the form of a discrete-time convolution, which expresses the output of a LTI 

discrete-time system due to a discrete-time input. Obtaining this expression took several steps 

because the sampling rates of the input sequence, discrete-time impulse response, and output 

sequence must all be equal.  

 

In summary, to upsample a discrete-time sequence to a rate that is higher than the original by a 

factor of L, the following steps are required: 

 

1. Create a new input sequence  x n   by inserting L – 1 zeros between each sample x[n] of 

the original input sequence; 

2. Define a discrete-time interpolation filter (a discrete-time lowpass filter!)  h n   at the 

higher sampling rate. The impulse response of this filter is defined by 

   sinch n n L  ; 

3. Perform a discrete-time convolution of  x n   and  h n   to obtain the output sequence. 

 

The ideal interpolation filter for constructing the continuous-time signal was defined above as 

   sinch t t T . Using our variables that enabled the rate changes, we can see that 

 

           sinc sinch n h n T h n T L n T L T n L          . (7) 

 

In other words, the ideal discrete-time interpolation filter is obtained by sampling the ideal 

continuous-time interpolation filter at the higher, upsampled rate. This filter has an infinite 

number of samples, which is why the discrete-time convolution in (6) requires an infinite 

summation. As we’ve studied before, we can make a practical, finite-duration, causal filter by 

delaying the ideal impulse response and applying a finite-duration window function.  

 

I would like you to create a practical discrete-time interpolating filter. Use the lowpass filter 

techniques we have already developed to approximate the impulse response of a lowpass filter 

with cutoff frequency equal to Fs/2 (half the original sample rate). Remember that when you 

delay the impulse response by D samples to make it causal, the output will be delayed by the 

same amount. Your practical interpolation filter should be sampled at a rate of LFs.  
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I would like you to test out your interpolation filter and Matlab script on a linear frequency-

modulated (LFM) radar waveform. This waveform is defined by: 

 

    2
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where f0 is the starting frequency and  is known as the chirp rate given in units of Hz per 

second. The waveform’s name can be understood by evaluating the instantaneous frequency of 

the waveform. The instantaneous frequency is given by 
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From (9), we can see that the frequency of the radar pulse is equal to f0 and t = 0. The frequency 

then increases linearly with time; hence, the name linear FM. 

 

Generate an LFM waveform that begins at t = 0 and ends at t = Tp = 0.1 ms. Let the chirp rate be 

2  10
10

 Hz/s. Let the initial frequency be f0 = 0. Therefore, the frequency at time t = 0 is fi(0) = 0 

and the frequency at the end of the radar pulse is fi(Tp) = Tp = 2 MHz. In turns out, that this 

ending frequency is also approximately the highest frequency component in the signal. 

Therefore, create a discrete-time representation of this radar pulse at a sampling rate of 5 MHz, 

which is a little faster than the approximate Nyquist sampling rate.  

 

Once you have generated this pulse, input it into your interpolation script to obtain the radar 

pulse sampled at a higher rate. Try several different values for the interpolation factor L and plot 

your results. Since you have the original equation for the continuous-time pulse, you might try 

comparing the interpolated signal to the signal you would have obtained by evaluating (8) at the 

higher rate directly. 

 

Part II: Matched Filtering 

 

The matched filter is important because is maximizes average SNR at the output of the filter. No 

other filter impulse response can give a better average SNR. In this section, you will perform 

discrete-time convolution of the LFM radar pulse with a time-reversed version of itself. You will 

then add noise to the input signal and view the matched filter output. 

 

The matched filter has the same shape is the signal that it is being matched to. Therefore, if you 

are matching to a LFM waveform as described above in (8), the impulse response of the matched 

filter is 

 

         
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It turns out that the value T0 is arbitrary – it’s purpose is to delay the filter’s impulse response to 

make it a causal filter, much in the same way that we’ve been adding delays to our lowpass 

filters. We won’t worry about this parameter for now. Instead, once you have a discrete-time 

version of the LFM waveform from the previous part of this assignment, just make your matched 
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filter by flipping the array it is stored in (check out the fliplr and flipud commands). Once you 

have the LFM waveform and the matched filter, convolve the two sequences using the conv 

command and plot the output. Although I’m not worried about the absolute time delay, your 

horizontal axis should have the correct time scale.  

 

What does the output of the matched filter look like? How wide is the main lobe of the output? 

What happens to the width of this main lobe if you change the bandwidth of the radar pulse? In 

radar, we sometimes refer to this processing step as pulse compression – do you have any 

explanations why this name makes sense? Remember that you might need to change the 

sampling rate if you increase the bandwidth, and every time you change a parameter of the radar 

pulse, you must also change the matched filter.  

 

Finally, add noise to the input radar pulse (not to the matched filter impulse response) until it 

becomes difficult to see the shape of the pulse. You can add noise using the randn command in 

Matlab. For example, if your input pulse is N samples long, you can create noise with the 

command  

 

 noise = sqrt(Pn)*randn(N,1); 

 

The variance of this noise is Pn. Add this noise array to your input pulse and comment on how 

the output has changed. Can you speculate on the value of the matched filter for detecting signals 

that are obscured by noise? How do things change if you change the radar chirp rate or the radar 

pulse duration, but keep the same noise variance? 

 

 

 

 

 

 

 


