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ECE 340 – Computer Assignment #1 
 

Filters and Demodulation (Draft) 
 

Due by 5 pm on Friday, Nov. 11 

 

The first computer assignment will explore filters, window functions, calculation of the Fourier 

Transform, and demodulation of communication signals. In the first part of the project, you will 

first write a program to numerically calculate the Fourier Transform of a signal. Then, you will 

write another script to modify the non-causal impulse response of an ideal lowpass filter by 

truncating it with a window function (similar to the demonstration I showed in class), and then 

convert it to a bandpass filter through modulation. You will then use your Fourier Transform 

program to evaluate the spectral properties of the resulting filters. In the second part, you will 

write a program to demodulate communications signals that I provide in order to remove the 

carrier frequency and hear the audio signal. 

 

I will talk you through the steps of the assignment using this handout. You should observe the 

results of your simulations, and you should make (well-labeled) plots to demonstrate important 

details about the project.  Use those observations to prepare a typed report explaining your 

methods and results for each section.  There is not a specific format for the report, but be sure to 

include details that show you did the work and that you understand what is happening. Include 

plots only when they convey something significant.  I will be looking for insight that shows a 

depth of understanding about these experiments.  At a minimum, your report should include an 

introduction describing what the project is about and what the objectives are; a section discussing 

the techniques or methods that you used (including theoretical results if appropriate); a section 

describing your results; and a section with your conclusions.  Any questions that I ask in this 

assignment should be answered, but more importantly these questions are designed to get you 

started in thinking about the assignment.  The best reports will demonstrate analysis and thought 

beyond the basic questions posed in this handout.  Listings of your Matlab code, appropriately 

labeled and commented, should be included. 

 

You should work with one partner and turn in a joint report.  I prefer for everyone to have a 

partner rather than working on your own. Groups may talk to each other about the assignment, 

but all Matlab code and report materials must be the result of your own group’s work.  

Code copied from another group is unacceptable. 

 

Part I:  Fourier Transform and Filter Analysis 

 

The Fourier transform is defined by 

 

      exp 2X f x t j ft dt




  . (1) 

 

In Part I, you will first write a program to numerically evaluate the Fourier Transform. The 

signals that you will be analyzing are stored on a computer, and therefore cannot be continuous 
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in time. Instead, they are sampled versions of the analog signal. Suppose that the signal x(t) in (1) 

is sampled at uniformly spaced instants in time and placed in a discrete-time sequence x[n] 

where n is the sample index. For example, the first sample is x[0], the next is x[1], and so on. If 

the uniform time between samples is Ts, then the Fourier transform in (1) can now be 

approximated by 

 

      exp 2s s

n

X f T x n j fnT




  . (2) 

 

This expression actually has a name – it is the discrete-time Fourier Transform. But 

unfortunately, we also cannot store a function of the continuous frequency variable f. Instead, we 

must also represent X(f) with samples at different frequencies fk. We haven‟t discussed the 

Nyquist sampling frequency in class yet, but it turns out that if the signal x(t) is sampled at a rate 

Fs, then the highest frequency in the original x(t) should be limited to Fs/2. Otherwise, there are 

some problems that occur. Therefore, set up an array of frequency values that are uniformly 

spaced from –Fs/2 to +Fs/2. For each frequency value, evaluate the Fourier Transform at that 

frequency using (2). In other words, for the kth frequency value fk, you can use Matlab to 

evaluate 

  

      
1

0

exp 2
N

k s k s

n
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



   (3) 

 

where N is the number of samples in the (necessarily) finite-length sequence x[n]. Repeat this 

computation for each frequency value and you will have a sampled version of the frequency 

spectrum. You can plot the magnitude and/or the phase of the resulting spectrum to get a good 

feel for the frequency content of the signal you are analyzing. Note: even though you have to 

repeat the calculations for each frequency, try to avoid using “for” loops. They slow Matlab 

down. 

 

Next, you will use your Fourier Transform program to evaluate the spectral shape of bandpass 

filters made from different window functions. First, we know from class that the impulse 

response of an ideal lowpass filter with cutoff frequency of B/2 is an infinitely long sinc function 

described by    sinch t B Bt . We can make a causal, practical lowpass filter by delaying the 

peak of the impulse response and by multiplying by a window function w(t) to give the impulse 

response a finite length. The resulting impulse response is 

 

       ˆ sinc dh t B B t t w t   . (4) 

 

The width and shape of the window function will determine the ultimate frequency response 

 Ĥ f  of the practical lowpass filter.  

 

Finally, we can convert this filter to a bandpass filter using the modulation property of the 

Fourier Transform. If we multiply in the time domain by  cos 2 cf t , the bandpass filter is 
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         ˆ sinc cos 2BP d ch t B B t t w t f t      (5) 

 

with Fourier Transform 

 

      
1ˆ ˆ ˆ
2

BP c cH f H f f H f f    
 

. (6) 

 

Therefore, the modulation takes the practical lowpass filter and applies a frequency shift such 

that the filter is centered at frequency fc. 

 

Design a bandpass filter using this approach. Start with an ideal lowpass filter with a cutoff 

frequency of 20 kHz. Then, apply the window function to limit the time duration of the filter and 

modulate the impulse response to obtain a bandpass filter with a cutoff frequency of 100 kHz. 

Use your Fourier Transform program to evaluate the frequency spectrum at different steps in the 

process (for example, before and after modulation), and also for different window shapes (e.g., 

hanning, rectangular, and others). Can you make any conclusions about how the shape and width 

of the window functions affect the spectrum of the bandpass filter? 

 

I will provide the script that I used in class to look at lowpass filters. This will give you a good 

start on delaying the ideal impulse response and applying the window function. However, this 

script was not for looking at bandpass filters. After modulation, the highest frequency in your 

filter response will be approximately fc + B/2 = 100 kHz + 20 kHz = 120 kHz. When you create 

the discrete-time version of your impulse response prior to modulation, the rate that you sample 

the impulse response is critical – it must be at least twice this highest frequency. Preferably, the 

sample rate would be 5-10 times the highest frequency to be sure you generate a clean, 

distortion-free plot. This sample rate should be an input parameter to your Fourier Transform 

program, not something that is hard-coded inside the program. 

 

Part II:  Double-Sideband, Suppressed-Carrier Demodulation 

 

Double-sideband, suppressed-carrier (DSB-SC) modulation is perhaps the simplest modulation 

technique. As seen in Section 7.7-1 of your textbook, a DSB-SC signal is created by directly 

multiplying an information-containing signal by a sinusoid at the carrier frequency. For example, 

let m(t) be a signal that carries some information of interest such as data as music. In our case, 

m(t) will be a clip from an audio file. Most of the frequency content in the audio file will be 

below 20 kHz because those are the frequencies we can hear, but it is difficult to transmit the 

signal to another location at these frequencies. Furthermore, if we wanted to transmit two audio 

signals at the same time, we couldn‟t because the two signals would combine during 

transmission in a way that prevents us from separating them at the receiver. To get around this, 

we typically use the information-containing signals to modulate a carrier in some way. For DSB-

SC, this modulation is performed by generating the signal 

 

      cos 2 cx t m t f t  (7) 
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where fc is the carrier frequency. From the modulation property of the Fourier Transform, we 

know that if the original Fourier Transform of m(t) is M(f), then the Fourier Transform of x(t) is 

 

      
1

2
c cX f M f f M f f      . (8) 

 

See Figure 7.35 in your textbook for diagrams of how the modulation looks in the time and 

frequency domains.  

 

Suppose that if I have several audio signals, each with a maximum frequency of 20 kHz. This 

means that the Fourier Transform before modulation will have all of its energy in the frequency 

band from -20 kHz to +20 kHz. After modulation, the modulated signal will have all of its 

energy contained in the frequency bands [-fc – 20 kHz, -fc + 20 kHz] and [fc – 20 kHz, fc + 20 

kHz]. If I use the different audio signals to modulate different carrier frequencies, then I can 

transmit multiple signals at once. The primary requirement for the carrier frequencies is that they 

should be at least 40 kHz apart so that the individual modulated signals do not overlap. 

 

Figure 1 shows a diagram of this idea for two signals. Because the two signals are placed on two 

different carrier frequencies, the receiver will be able to recover both. But first consider 

demodulation of a single signal like the one in the equations above. The goal of the receiver is to 

recover the message-bearing part of the signal m(t) from the modulated signal x(t). Again, 

Section 7.7-1 of your textbook explains how to do this. The first step is to multiply the received 

signal x(t) by the carrier term. This step results in the signal 

 

 

       

     

cos 2 cos 2

1
cos 2 2

2

c c

c

e t m t f t f t

m t m t f t

 





   

, (9) 

 

which by linearity and the modulation property has the Fourier Transform 

 

         
1 1

2 2
2 2

c cE f M f M f f M f f
 

     
 

. (10) 

 

Studying (10), we see that there is now a copy of the original message‟s Fourier Transform 

centered again at zero frequency (called baseband), but scaled by ½. There are also two other 

copies: one centered at 2fc and another at -2fc, and both scaled by ¼. The message signal can now 

be completely recovered by passing e(t) through a lowpass filter that rejects the two copies that 

are not located at baseband. 

 

Finally, we now see that if there are multiple signals, each located at a different carrier 

frequency, that we can recover any one we want by demodulating with the correct carrier 

frequency. Each carrier frequency will cause a different signal to be centered at zero frequency. 

We then pass the signal through a lowpass filter to reject other signals, and we‟ve recovered the 

one we want. 
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Figure 1. The Fourier spectrum of two signals (distinguished by different spectral shapes) 

modulating two different carrier frequencies. 

 

In Part II, you will write a simulation that recovers a double-sideband, suppressed-carrier (DSB-

SC) communications signal (see Section 7.7-1 in your textbook).  I have taken eight different 

audio files and captured approximately 12-second snapshots from each.  I then made one data 

file that has each of the eight audio files in it.  Each audio signal is modulated to a different 

carrier using DSB-SC modulation.  The carrier frequencies are 40 kHz, 80 kHz, 120 kHz, …, 

280 kHz, and 320 kHz. 

 

You should write a simulation that loads the data file and has carrier frequency as an input 

parameter. The simulation should recover the signal at the desired carrier by multiplying the data 

by a cosine with the desired carrier, then filtering the signal to capture the signal of interest. You 

can perform the lowpass filtering by convolving the signal (after multiplying by cos(2fct) with 

the filter‟s impulse response using Matlab‟s “conv” command. You must design a lowpass filter 

using the window truncation techniques from Part I. The quality of your recovered signal will 

depend on the quality of your filter. 

 

After performing these steps, you can listen to the signal using Matlab‟s “sound” command.  For 

more information on this command, type „help sound‟ at Matlab‟s command prompt. 

 

In this section, we are studying an analog modulation technique.  However, any data that I give 

you in a computer file must necessarily be digital. I can‟t provide you with analog signals unless 

I give them to you on something like a magnetic audio tape, which isn‟t very practical.  And 

even then, you would have to sample and quantize the signals if you want to process them on a 

digital computer.  So what I have done is to give you signals that are sampled much higher than 

the carrier frequency.   

 

Your program should allow you to “tune” to one of the carriers and recover the audio signal on 

that carrier.  To properly demodulate you need a perfectly synchronized carrier. To do the 

modulation, I used a cosine function with zero initial phase according to  cos 2 cf t . You 

should use this exact same signal to demodulate; therefore, you not only need to know the phase 

of the carrier, but how my time array was defined. 
 

My time array starts at t = 0.  In order to stay in phase, you will also need to start your time array 

at t = 0.  The sampling rate for this data file is Fs = 705.6 kHz.  So you should make a time array 

that starts at 0, increments by Ts = 1/Fs, and is the same length as the input data.  (Note:  do not 

use a “for” loop to make the time array.  You will be waiting all day.  Matlab is optimized for 

f 
f1 -f1 f2 -f2 



 6 

matrix and vector operations.  Using for loops is very inefficient in Matlab.) As mentioned 

above, the carrier frequencies are spaced by 40 kHz. 

 

Use your Fourier Transform script from Part I to analyze the frequency spectrum of the original 

DSB-SC signal.  Then, compare the spectra for some of the downconverted signals before and 

after lowpass filtering.  Does the filtered spectrum look like the bandpass spectrum at the 

corresponding carrier frequency? 

 

Try using a low order lowpass filter.  What happens if the LPF isn‟t very good?  Also, what 

happens if you add a phase of 90 degrees to the carrier? 

  

Part III.  Name That Tune from Dr. Goodman’s Childhood 

 

There are eight songs from Part II of this project.  All of the songs were popular around Dr. 

Goodman‟s grade-school years.  If you would like, try to name all eight artists and song titles.   

 

Finally, some additional notes: 

 

The data files for this project will be distributed by posting to the web.  The files are in 32-bit 

floating-point binary format.  The files were written using Matlab on a Windows PC, so if you 

are using something other than Windows on an Intel-type processor, there may or may not be 

“endian” issues.  To load them into Matlab, do the following commands: 

 

fid = fopen(„filename.bin‟,‟rb‟); 

a = fread(fid,‟float32‟); 

fclose(fid); 

 

The first command opens the data file for reading in binary format.  The second command reads 

all the data in the file.  It also tells Matlab that the data was stored in 32-bit floating-point format.  

The third line closes the data file.  For debugging your code, you may want to generate some 

shorter data files that won‟t take as long to process.  If you actually want to store a shorter file on 

disk, then you can use the fwrite command.  Or, you can just add the following two lines to 

obtain the beginning of the data file and clear the original full-length signal: 

 

b = a(1:iend); 

clear a; 

 

(Note that you will need to define the variable iend to be, say, 1/5 or 1/10 of the original signal 

length).  After debugging, you can go back to using the full-length data record for your analysis 

and listening pleasure. 

 

Some commands that might be useful for this project include: flipud, fliplr, log10, fid, fwrite, 

fread, fclose, axis, xlabel, ylabel, title, figure, plot, subplot, abs, sound, soundsc, help. 


