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System Identification and CDMA Communication 
 

A (partial) sample report by 
Nathan A. Goodman 

 
Abstract 
 
This (sample) report describes theory and simulations associated with a class project on system 
identification and code-division multiple access (CDMA) communication.  The goals of the project are to 
gain experience applying principles of digital signal processing, to obtain understanding of how signal 
correlation is used in signal processing applications, and to practice technical writing and scientific 
communication. 
 
1.  Introduction 
 

Correlation is a fundamental quantity used to analyze and quantify the content of 
information-bearing signals.  Correlation quantifies the similarity between two signals; therefore, 
correlation can be used to find hidden structure embedded well below noise and distortion levels.  
In electrical and computer engineering, for example, signal correlation can be used to detect 
communication symbols or radar pulses reflected by a target, to estimate channel properties, or to 
estimate signal parameters.  In many cases, correlation is even the optimum processing 
operation.  In fact, the well-known Fourier Transform is essentially a correlation operator. 

 
In this report, we study and demonstrate the usefulness of signal correlation through two 

application examples.  The first example is system identification (ID) where the cross-correlation 
between an unknown system’s input and output signals can be used to estimate the channel’s 
impulse response.  We will examine system ID performance as a function of the input signal’s 
structure and energy.  The second application example is the detection of digital communication 
symbols buried in noise and multi-user interference. 
 
II.  System Identification 
 
A.  Background 
 

Suppose that a signal can be measured only after it passes through an unknown linear, time-
invariant (LTI) system.  It is sometimes important to characterize the unknown system so that 
distortions introduced by the system can be removed from the measured signal.  In some cases, 
knowledge of the system can even be used to modify the input to the system in an advantageous 
way.  For example, if a communication channel can be characterized, the transmitted waveform 
can be pre-conditioned such that it arrives at the receiver in the desired shape, thus reducing the 
need for adaptive equalization. 

 
The system ID technique tested in this project is based on cross-correlation between the 

measured output signal and a known input signal.  We know that the output, ( )y n ,of a LTI 
system is 
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where ( )x n  is the input signal and ( )h n  is the system’s impulse response.  We also know that 
the cross-correlation between two sequences can be expressed as the convolution of the first 
sequence with the time-reversed copy of the second.  Thus, the cross-correlation between the 
output and input signals is 
 

 ( ) ( ) ( )yxr n y n x n= ∗ − . (2) 
 
When (1) is substituted into (2), the result is 
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where ( )xxr n  is the autocorrelation of the input signal.  Taking the discrete-time Fourier 
Transform (DTFT) of both sides of (3) yields  
 

 ( ) ( ) ( ) ( ) ( ) 2

yx xxS f H f S f H f X f= =  (4) 
 
where ( )yxS f  is the DTFT of ( )yxr n , ( )H f  is the system’s transfer function, and 

( ) ( ) 2

xxS f X f=  is the input signal’s energy spectrum.  From (4), the system transfer function is 
 

 ( ) ( )
( ) 2

yxS f
H f

X f
= , (5) 

 
and ( )h n  can be found from the inverse DTFT of (5).   
 

In practical situations, however, it is impossible to measure a noise-free version of the 
system’s output signal.  Hence, a better model for the output signal is 
 

 ( ) ( ) ( ) ( )y n x n h n w n= ∗ +  (6) 
 
where ( )w n  is a noise process.  Substituting (6) (rather than (1)) into (2) results in an additional 
noise term not accounted for in the preceding analysis.  The output of the cross-correlation is 
then 
 

 ( ) ( ) ( ) ( ) ( )yx xxr n h n r n w n x n= ∗ + ∗ − , (7) 
 
and the DTFT now yields  
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 ( ) ( ) ( ) ( ) ( )2

yxS f H f X f W f X f∗= + . (8) 
 
Finally, solving for ( )H f  shows the corruption that occurs due to the presence of noise.  The 
estimate of the system transfer function is now 
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B.  Simulation Results 
 

We have developed a simulation to test and quantify the performance of the system ID 
technique described above as a function of input signal structure and signal-to-noise ratio (SNR).  
We focus on a finite-impulse response (FIR) system and assume that the order (and, therefore, 
length) of the system is known.  In practice, the system order would usually need to be estimated 
as well.  We began with simple signals and with noise power set to zero to verify the simulation 
was working properly and to find the correct location of the impulse response in the final output 
sequence.  Once this was accomplished, we studied the effects of signal structure and noise 
power as described below. 

 
The first signal studied was an impulse with power equal to 1000.  Thus, the input signal was 

( ) ( )1000x n nδ=  where ( )nδ  is the standard unit impulse function for discrete-time signals.  
The autocorrelation sequence of this input signal is simply 
 

 ( ) ( ) ( ) ( )1000 * 1000 1000xxr n n n nδ δ δ= − = , (10) 
 
and the signal’s energy spectrum is 
 

 ( ) 2
1000; 0.5 0.5X f f= − ≤ ≤ . (11) 

 
The noise power was set to one, and a 21-sample impulse response was generated using the 
optimum equiripple design for a bandpass filter.  Since the simulated noise is different each time 
the simulation is executed, the estimated impulse response will also vary.  One example of the 
estimated impulse response is shown in Fig. 1 along with the true impulse response.  Figure 1 
shows that the impulse response has been estimated well, but not perfectly.  By comparison, if 
the noise power is set to Pn = 10, a sample result is shown in Fig. 2.  The estimation error seen in 
Fig. 2 is clearly larger than the estimation error seen in Fig. 1.  Obviously, this behavior is 
expected since the noise power has increased. 
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Figure 1.  Sample result for the estimated system impulse response when the input signal is 

( ) ( )1000x n nδ=  and the noise power is Pn = 1.  
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Figure 2.  Sample result for the estimated system impulse response when the input signal is 

( ) ( )1000x n nδ=  and the noise power is Pn = 10. 

 
The second signal studied is a pseudonoise random waveform of length L created using 

Matlab’s Gaussian random number generator.  The advantage of a noise waveform is that, on 
average, the autocorrelation function is again a unit impulse.  In other words,  
 

 ( ) ( ) ( ) ( )Exx xr n x l x l n P nδ⎡ ⎤= − =⎣ ⎦  (12) 
 
where [ ]E ⋅  is the expected value operator and Px is the random waveform’s average power.  Of 
course, only a single realization of the random waveform can be transmitted; hence, the 
autocorrelation of the actual input waveform will not be a perfect impulse.  Figure 3a shows a 
sample realization of a noise waveform with Px = 1000.  Figure 3b shows the autocorrelation 
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Figure 3.  Top Panel: A sample realization of a pseudorandom waveform.  Middle Panel: The autocorrelation 

of the waveform realization.  Bottom Panel:  Autocorrelation averaged over 500 waveform realizations. 
 
function for the realization shown in Fig. 3a, and Fig. 3c shows the autocorrelation function that 
resulted from averaging the autocorrelation function over 500 realizations of the noise 
waveform.  The average power spectrum of the random waveform is the DTFT of the average 
autocorrelation function.  Since the average autocorrelation is the unit impulse seen in Fig. 3c, 
the average power spectrum is flat, which is the optimum scenario for system ID.   
 

A pseudorandom input waveform has approximately the same autocorrelation function as a 
unit impulse.  However, a single realization of the random waveform will have larger energy 
than the unit impulse.  Hence, we expect to see improved performance over that obtained with a 
unit impulse of the same power.  We also note that for best performance, the system ID 
algorithm should have knowledge of the particular waveform realization.  Figure 4 shows an 
example of estimation performance when a pseudorandom waveform with length 50 is used and 
the noise power is Pn = 10.   

 
The impulse response estimate in Fig. 4 is clearly improved over the estimate obtained with 

the unit impulse for the same noise power.  In comparing Figs. 1, 2, and 4, it becomes apparent 
that the noise power and length of the input waveform both effect system ID performance.  We 
hypothesize that SNR determines relative performance between input waveforms having the 
same power spectrum (average power spectrum in the case of pseudorandom waveform).  Thus, 
we define SNR as 
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Figure 4.  Sample result for the estimated system impulse response when the input signal is a pseudonoise 

waveform with Px = 1000 and the noise power is Pn = 10. 
 

 SNR x

n

P
P

=  (13) 

 
where Px = 1000 for the unit impulse, ( )2E 1000xP x n⎡ ⎤= =⎣ ⎦  for the pseudorandom waveform, 
and Pn is the noise power.  To quantify mean-squared error (MSE) performance, we repeated the 
system ID simulation 25000 times for the unit impulse and for pseudorandom waveforms of 
varying length.  We also varied the SNR through control of the noise power.  We then calculated 
the average squared-error for the 25000 trials according to 
 

 ( ) ( )
25000 T

1

1 ˆ ˆ
25000 k k

k
MSE

=

= − −∑ h h h h  (14) 

 
where h is a column vector containing the values of the true impulse response, ˆ

kh  is a vector 
containing the estimated impulse response from the kth trial, and ( )T

⋅  is the transpose operator.   
 

The results of our Monte Carlo simulations were very interesting.  The squared-error values 
for the unit impulse were well behaved, but values for the pseudorandom waveform were 
sometimes extremely large.  Figure 5 shows a histogram of the squared-error values for the 
length-50 pseudorandom waveform at an SNR of 40 dB.  Despite using 100 bins for the 
histogram, 99.8% of the squared-error values fall into the lowest bin while the remaining values 
vary significantly but rarely occur.  In fact, these other values occur so rarely that they cannot be 
seen on the same scale that is appropriate for the smallest bin.  Figure 6 shows the same 
histogram with a reduced vertical scale. 

 
Unfortunately, the outlying squared-error values seen in Fig. 6 seemed to de-stabilize the 

average squared-error performance results.  In other words, average squared-error plots using all 
25,000 trials produced curves that were not as smooth as expected or desired.  Therefore, we 
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Figure 5.  100-bin histogram of squared-error values for SNR = 40 dB 

and a pseudorandom waveform with L = 50. 
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Figure 6.  Vertically scaled version of Figure 5 showing rarely occurring values. 

 
 

decided to ignore the outliers by using only the lowest 24,900 values in the mean calculation for 
a given waveform and SNR.   The result of this procedure is shown in Fig. 7.  In Fig. 7, it is seen 
that the unit impulse and the pseudorandom (labeled PN, for ‘pseudonoise’) waveform of length 
five perform nearly the same.  This was unexpected since most of the pseudorandom waveform 
realizations have higher energy than the unit impulse.  Our explanation for the unexpected result 
is that the autocorrelation properties of a given random waveform realization strongly affect 
performance.  We believe that in extreme cases, poor autocorrelation properties produce the 
outlying results seen in Fig. 6.  In less extreme cases, waveform realizations with weak 
autocorrelation properties still produce worse estimates than can be achieved with a unit impulse.  
Hence, on average and excluding the extreme outliers, the waveforms perform nearly the same. 
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Figure 7.  (Approximate) MSE performance vs. SNR and parameterized by waveform. 
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Figure 8.  The power spectrum of a poorly performing pseudorandom waveform in (a), and a satisfactorily 
performing pseudorandom waveform in (b). 

 
 

Another interesting aspect seen in Fig. 7 is the shift between curves associated with 
pseudorandom waveforms with different lengths.  The lengths of the waveforms differ by factors 
of 10 when going from L = 5, to L = 50, to L = 500.  Likewise, the performance curves are 
shifted by approximately 10log10(10) = 10 dB relative to each other.  Since the average energy in 
the pseudorandom waveforms is x xE LP= , it appears that the relative shift in performance is 
directly proportional to the pseudorandom waveform’s average energy. 

 
Finally, we test our explanation that correlation properties of an individual waveform 

strongly affect squared-error performance.  To test our hypothesis, we generated noise 
waveforms until we found two waveforms that performed quite differently.  The power spectra 
of these two waveforms are shown in Figs. 8a and 8b.  Figure 8a, which shows the spectrum of a 
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poorly performing waveform, has a noticeable null located around f = 0 cycles/sample.  Since the 
estimated transfer function is obtained by dividing ( )yxS f  by the waveform’s power spectrum, 
very low values in the power spectrum correspond to dividing by a small number.  Furthermore, 
in the presence of noise, division by a small number can produce unstable results.  Further 
investigation confirmed that poorly performing waveforms consistently had a deep null in their 
spectrum while waveforms that performed well consistently did not have a deep null. 
 
C.  Conclusions 
 

We have successfully implemented a system identification algorithm based on cross-
correlation between the input and output sequences of the system.  We have analyzed 
performance in terms of waveform structure and SNR.  This performance analysis yielded a 
surprising result in that the L = 5 pseudorandom waveform performed approximately the same as 
the unit impulse despite having higher average energy.  This behavior was investigated further, 
and we discovered that pseudorandom waveforms with a deep null in their spectrum produced 
unstable estimates of the system’s impulse response.  This instability creates a much wider 
performance range for pseudorandom waveforms than for the unit impulse waveform.  To 
faithfully reflect the performance of pseudorandom waveforms, we have excluded the simulation 
trials resulting in large estimation errors deemed to be “outliers”.  This approach resulted in 
stable performance results that we feel are representative of the true relative performance 
between different waveforms. 
 
III.  CDMA Communication 
 

This sections background, results, and conclusions… 
 
IV.  Final Summary and Conclusions 
 

Potentially a section giving the conclusions from the entire project, but no need to rehash 
conclusions from individual sections of the project. 
 
 
 
 
 
 


