IMAGE WARPING

- Correct system distortions
- Register multiple images
- Register image to map (rectification)
- Register multiple images (rectification)
- Correct system distortions

Applications

Rectification of Landsat TM Image
WHAT IS REGISTRATION?

- Alignment of two images such that pixels in each correspond to the same area

IMAGE WARPING

Examples of registered remote sensing images

SAME SENSOR

Different sensors

Date 1, date 2 with off-nadir pointing

Or

Date 1 and date 1 + revisit period

Orbit

Orbit K

Orbit J
THREE COMPONENTS TO WARPING

• Resampling (interpolation)
• Coordinate transformation
• Appropriate mathematical distortion model(s)
For example, a quadratic polynomial is written as:

\[
\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \left(a_{ij} x_{\text{ref}}^i y_{\text{ref}}^j + b_{ij} x_{\text{ref}}^i y_{\text{ref}}^j \right) = x,\ y
\]

Coordinate system \((x', y')\) and Reference

- Relates distorted coordinate system \((x, y)\) and Reference
- Known as "rubber sheet stretch"

Generic model useful for registration, rectification and geocoding

POLYNOMIAL DISTORTION MODELS

IMAGE WARPING
The coefficients in the polynomial can be associated with particular types of distortion.

The coefficients in the polynomial can be associated with particular types of distortion.

Image Warping

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Warp Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{00})</td>
<td>Nonlinear scale in (x)</td>
</tr>
<tr>
<td>(b_{00})</td>
<td>Nonlinear scale in (y)</td>
</tr>
<tr>
<td>(a_{10})</td>
<td>(x)-dependent scale in (y)</td>
</tr>
<tr>
<td>(b_{01})</td>
<td>(y)-dependent scale in (x)</td>
</tr>
<tr>
<td>(a_{01})</td>
<td>(x)-dependent shear in (y)</td>
</tr>
<tr>
<td>(b_{10})</td>
<td>(y)-dependent shear in (x)</td>
</tr>
<tr>
<td>(a_{11})</td>
<td>Nonlinear scale in (x)</td>
</tr>
<tr>
<td>(b_{11})</td>
<td>Nonlinear scale in (y)</td>
</tr>
<tr>
<td>(a_{20})</td>
<td>(x)-dependent shift in (y)</td>
</tr>
<tr>
<td>(b_{02})</td>
<td>(y)-dependent shift in (x)</td>
</tr>
</tbody>
</table>

These coefficients represent different types of distortions that can be applied to an image.
different types of distortion
Dr. Robert A. Schowengerdt, schowengerdt@ece.arizona.edu, 520-621-2706 (voice), -8076 (fax)

IMAGE WARPING

• A linear (affine) polynomial (number of terms $K = 3$)

Special case that can include:

• shift
• scale
• rotation
• shear

In vector-matrix notation

$$
\begin{bmatrix}
00 q \\
00 p
\end{bmatrix} + \begin{bmatrix}
\hat{f}_{\alpha \lambda} & \hat{f}_{\alpha \xi} \\
\hat{f}_{\xi \lambda} & \hat{f}_{\xi \xi}
\end{bmatrix} \begin{bmatrix}
10 q & 01 q \\
10 p & 01 p
\end{bmatrix} = \begin{bmatrix}
\hat{x} \\
\hat{y}
\end{bmatrix}
$$

rotation

shear

scale

shift

Special case that can include:

• A linear (affine) polynomial (number of terms $K = 3$)
Varying degree, depending on the problem
often located by visual examination, but can be automated to
- Often located by visual examination, but can be automated to
 - all are at the same elevation (unless topographic relief is being specifically addressed)
 - unchanging over time
 - small feature size
 - high contrast in all images of interest

Characteristics:
- Use to control the polynomial, i.e., to determine its coefficients

GROUND CONTROL POINTS (GCPS)

IMAGE WARPING
Automated GCP Location

- Use image "chips"
- Small segments that contain one easily identified and well-located GCP
- Normalized cross-correlation between template chip T (Reference)
- Normalization adjusts for changes in mean DN within area

\[
\begin{align*}
K & = R_{ij}T_{mn}S_{im}\sum_{n=1}^{N} + 1 = u, 1 = w \\
K & = R_{ij}S_{im}\sum_{n=1}^{N} + 1 = u, 1 = w
\end{align*}
\]

where

\[
R_{ij} = \frac{1}{N} \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{T_{mn} - \mu_T}{\sigma_T} \cdot \frac{S_{imjn} - \mu_S}{\sigma_S}
\]
Schematic for correlation

Chip layout over full scene

two relative shift positions

Cross-correlation of one area

IMAGE WARPING
Example with TM "chips"
IMAGE WARPING

Using GCPs to find polynomial coefficients

• Set up system of simultaneous equations using GCPs and solve for polynomial coefficients

Given M pairs of GCPs

For each GCP pair, m, create two equations

Example with quadratic polynomial (number of terms K = 6)

Using GCPs to find polynomial coefficients
So, for each set of GCP x- and y-coordinate pairs, we can write

Exact solution which passes through GCPs, i.e., they are mapped exactly

\[X \mathbf{M} = \mathbf{B} \]
\[X \mathbf{M} = \mathbf{V} \]

- **Determined case** ($M = K$, just enough GCPs) solution:

\[\mathbf{B} \mathbf{W} = \mathbf{X} \]
\[\mathbf{V} \mathbf{W} = \mathbf{X} \]

So, for each set of GCP x- and y-coordinate pairs, we can write
315

Dr. Robert A. Schowengerdt, schowengerdt@ece.arizona.edu, 520-621-2706 (voice), 8076 (fax)

315

315

315

315

315

IMAGE WARPING

• Overdetermined case (M > K, more than enough GCPs):

\[
\begin{align*}
(\mathbf{WM} - \mathbf{X}) (\mathbf{WM} - \mathbf{X}) & = [X_3 X_3] \min \\
(\mathbf{YM} - \mathbf{X}) (\mathbf{YM} - \mathbf{X}) & = [X_3 X_3] \min
\end{align*}
\]

This solution results in least-squares minimum error at GCPs:

This solution is called the pseudoinverse of \(\mathbf{W} \) is called the pseudoinverse of \(\mathbf{W} \)

\[
\begin{align*}
\mathbf{XM} & = \mathbf{B} \\
\mathbf{XM} & = \mathbf{V}
\end{align*}
\]

Solution:

\[
\begin{align*}
X_3 + BM & = X \\
X_3 + VM & = X
\end{align*}
\]
1-D Example of Polynomial Curve Fitting

$y = 13.228 + 0.82085x \quad R^2 = 0.93425$
Second order

\[y = M_0 + M_1 x + \ldots + M_8 x^8 + M_9 x^9 \]
IMAGE WARPING

third order

\[Y = M_0 + M_1 x + \ldots + M_8 x^8 + M_9 x^9 \]

\begin{tabular}{|c|c|}
\hline
\textbf{Y} & \textbf{x} \\
\hline
0.98745 & 0 \\
0.011585 & 30 \\
-0.14393 & 60 \\
5.9866 & 90 \\
-24.455 & 120 \\
\hline
\end{tabular}
IMAGE WARPING

Fourth order

\[Y = M_0 + M_1 x + \ldots + M_9 x^8 + M_{9,x} x^9 \]

<table>
<thead>
<tr>
<th>(M_0)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99999</td>
<td></td>
</tr>
<tr>
<td>3.4942e-05</td>
<td></td>
</tr>
<tr>
<td>-0.0049359</td>
<td></td>
</tr>
<tr>
<td>3.4942e-05</td>
<td></td>
</tr>
<tr>
<td>-2.5272</td>
<td></td>
</tr>
<tr>
<td>31.173</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Coefficients
Dr. Robert A. Schowengerdt, Schowengerdt@ece.arizona.edu, 520-621-2706 (voice), 8076 (fax)

IMAGE WARPING

- Fifth order

\[y = M_0 + M_1 x + \ldots + M_8 x^8 + M_9 x^9 \]
Example Application

• Register aerial photo to map in an urban area

 (red circles) points (GPs) in each
 each (black crosses)
 locate 6 GCPs in
 locate 4 Ground
 not used for control, only

 for testing

 GCP 1
 GCP 2
 GCP 3
 GCP 4
 GCP 5
 GCP 6

 aerial photo (x,y)

 map reference (x_{ref}, y_{ref})
Mapping of GCPs

Image Warping

Mapping of GCPs
Error at GCPs and GPS versus polynomial order

IMAGE WARPING
Refinement of GCPs by error analysis

Original six GCPs

Five GCPs, with outlier deleted
Final Result

IMAGE WARPING
IMAGE WARPING

Piecewise Polynomial Distortion Model

- For severely distorted images that can't be modeled with a single, global polynomial of reasonable order.

Example airborne scanner image

Reasonable order single, global polynomial of that can't be modeled with a

Distortion Model

Piecewise Polynomial
Coordinate Transformation

Image Warping

Overlaying of multiple pixels in the processed image

“Backwards” mapping from \((x_{re}^f, y_{re}^f)\) to \((x, y)\) avoids “holes” or

\(\begin{align*}
(x_{re}^f, y_{re}^f) & \text{ from the original image at } (x, y) \\
& \text{resampling} \\
& \text{Implemntation} \\
\end{align*}\)

\(\begin{align*}
(x, y) & \text{ by Eq. 7-27} \\
& \text{disortion correction} \\
& \text{coordinate system} \\
& \text{distorted Image Frame} \\
& \text{coordinates are mapped from the reference frame to the}
\end{align*}\)

\(\begin{align*}
(x_{re}^f, y_{re}^f)_{implied} & = (x, y) \\
\end{align*}\)
Image warping is the transformation between two frames.

Coordinate transformation between two frames:

\[(x_{\text{ref}}, y_{\text{ref}})\]

\[(x', y')\]
The (x,y) coordinates calculated by are generally between the integer pixel coordinates of the array. Therefore, must estimate (interpolate or resample) a new pixel. The (x,y) coordinates calculated by the array are generally between the integer pixel coordinates of the array

\[f(x',y') = (x',y') \]

Resampling

Image Warping
Image Warping

- Pixels are resampled using a weighted-average of the neighboring pixels.

- Three common weighting functions:
 - Nearest-neighbor: Fast, but discontinuous
 - Bilinear: Slower, but continuous
 - Nearest-neighbor: Fast, but discontinuous

Implement 2-D bilinear resampling as two successive 1-D resamplings:

- Resample E between A and B
- Resample F between C and D
- Resample DN(x,y) between E and F

Mathematically:

\[\Delta y \left[\frac{\partial DN \left(x - 1 \right) + \partial \triangle x \Delta y}{\partial y} \right] + \left(\Delta x - 1 \right) \left[\frac{\partial DN \left(y - 1 \right) + \partial \triangle y \Delta x}{\partial x} \right] = \frac{\partial DN}{\partial x} \]

Three common weighting functions:

- Nearest-neighbor: Fast, but discontinuous
- Bilinear: Slower, but continuous
- Nearest-neighbor: Fast, but discontinuous
 IMAGE WARPING

bicubic: slowest, but results in sharpest image

- piecewise polynomial; special case of Parametric Cubic Convolution (PCC)
- approximates image as a set of parabolas centered on the grid points
- formula involves cubic polynomials for each pixel
- suitable for small displacements

bicubic

where ∇ is the distance from (x', y') to the grid points in 2D

- $\nabla = |x' - x|$
- $\nabla = |y' - y|$
- α is a parameter
- $\Delta = 1 - \alpha^2$
- $\Delta = -0.5$
- $\Delta = -1$
- $\Delta = -1.5$
- $\Delta = -2$
- $\Delta = -2.5$
- $\Delta = -3$
- $\Delta = -3.5$
- $\Delta = -4$

High-pass filter characteristics: amount of boost depends on amplitude of side-lobes, which is proportional to α.

- "Standard" bicubic is $\alpha = -1$; superior bicubic is $\alpha = -0.5$.

$DN_{\alpha}(\nabla, \alpha) = (\nabla^2 x + \alpha)(\nabla^2 y + \alpha)$
IMAGE WARPING

\[\Delta x_1 - \Delta x \cdot \alpha; \delta \Delta y_1 - \Delta y \cdot \alpha; = \Delta x \cdot \alpha; \delta \Delta y = \Delta \alpha; \delta \]

PCC resampling procedure

- resample along each row, A-D, E-H, I-L, M-P
- resample along new column Q-T
Comparison of nearest-neighbor and bilinear resampling for image magnification:

- **1x** (Original image)
- **2x**
- **3x**

NEAREST-NEIGHBOR:

- **1x**
- **2x**
- **3x**

BI线ERLINEAR:

- **1x**
- **2x**
- **3x**

IMAGE WARPING
Surface plots from previous figure

bilinear

nearest-neighbor
Comparison of 4 resampling functions for image magnification:

- **Nearest Neighbor**
- **Bilinear**
- **PCC ($\alpha = -0.5$)**
- **PCC ($\alpha = -1.0$)**
Note, resampling function affects local radiometric accuracy. While polynomial distortion model affects global geometric accuracy.

- nearest-neighbor - bilinear
- bilinear - PCC

Image difference maps resulting from different resampling functions.