THE NATURE OF REMOTE SENSING

Reading: Chapter 1

THE NATURE OF REMOTE SENSING

• Introduction
• Remote Sensing Systems
• Remote Sensing Physics
• Sensor Parameters
• Display and Data Systems
Definitions

- Remote Sensing = “Measurement at a Distance”
- This course is about Earth remote sensing
 - Airborne or satellite platforms
 - Optical region of the spectrum
 - visible (400-700nm) to thermal (long-wave) infrared wavelengths (8 to 12mm)

Definitions (cont.)

- Remote sensing requires
 - Active or passive source
 - Target
 - Medium (typically lossy)
 - Sensor (optics, detector)
- Source radiation modeled as a traveling wave
 - Time-harmonic
 - $c = \lambda \nu$
 - $c = 2.998 \times 10^8$ m/s
 - λ is the wavelength
 - ν is the frequency
 - Also, wavenumber $1/\lambda$, cm$^{-1}$
- EM spectrum is infinite and continuous
- Energy interacts with matter
 - Reflection (Scattering)
 - Transmission
 - Absorption (Re-emitted)
- Sensor characteristics
 - Spatial (Ground Sample Interval)
 - Spectral (Range and width)
 - Temporal (Revisit time)
 - Radiometric (Precision)
Applications

- Environmental assessment and monitoring
- Global change detection
- Agriculture
- Nonrenewable resources
- Renewable resources
- Meteorology
- Mapping
- Military surveillance and reconnaissance
- News media

Types of Sensors and Sensing

- Multiangle Imaging SpectroRadiometer (MISR) sensor on NASA Terra satellite (http://www-misr.jpl.nasa.gov/)
Broadband Sensors

- Single, broad spectral band, typically 400nm wide in the visible spectrum
- Often called “panchromatic”
- Large number of photons collected, which allows smaller detectors, i.e. greater spatial resolution

Corona was the first global satellite reconnaissance mission
- High resolution camera
- Photographic film returned to Earth in re-entry capsule

Heat Capacity Mapping Mission (HCMM)

- One-of-a-kind NASA sensor
 - First Applications
 - Explorer Mission AEM-1
 - April 26, 1978 - September 30, 1980
- Demonstrated relatively high resolution (600m) thermal remote sensing from satellites
- **Heat capacity** refers to retention and release of thermal energy by geologic materials during the diurnal cycle
Multispectral Sensors

- **Co-registered images in several relatively narrow spectral bands**
 - Typically 50-100nm wide in the visible spectrum, wider at longer wavelengths

- **Landsat Series (1-7)**
 - 1972 - date
 - Landsat 6 failed to achieve orbit, 5 and 7 still operating
 - Various multispectral sensors
 - Multispectral Scanner System (MSS): 4 bands, VNIR 80m
 - Thematic Mapper (TM): 7 bands, VNIR/SWIR 30m, TIR 120m
 - Enhanced Thematic Mapper (ETM+): 8 bands, PAN 15m, VNIR/SWIR 30m and TIR 60m

Multispectral Display

- **Visualize spectral content with 3-band color composites**

- **Example: color infrared (CIR)**
 - Red channel assigned to near IR sensor band
 - Green channel assigned to red sensor band
 - Blue channel assigned to green sensor band

- Vegetation appears red, soil appears yellow - grey, water appears blue - black
Airborne Sensors

Positive Systems, ADAR System 5500, single frame
Color infrared (CIR) composite of Tanque Verde Wash, Tucson

Hyperspectral Sensors

- Multispectral sensor with relatively high spectral resolution (typically 5 - 10 nm) and large number (typically 200) of nearly-contiguous bands
 - high spectral resolution potentially allows high discrimination of surface features
- Typically acquired with an imaging spectrometer over the wavelength range 400 to 2400nm
 - mostly airborne systems
 - Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (http://makalu.jpl.nasa.gov/aviris.html): 224 bands, 5-20m
 - Hyperion is first satellite hyperspectral sensor, on NASA EO-1 satellite (http://eo1.gsfc.nasa.gov/Technology/Hyperion.html): 220 bands, 30m

AVIRIS hyperspectral image cube of Los Alamos, NM (courtesy Chris Borel, LANL)
Spectral Signatures

AVIRIS CIR composite image of Palo Alto, CA

Multitemporal Image Series

Landsat Multispectral Scanner System (MSS) 13-year image series of copper mine expansion near Tucson, AZ
Global Composites

- Images from a single sensor, acquired over a long period of time (e.g., days or weeks)
- "Cloud-free" pixel composite
- Mosaiced
- Projected in a single map projection for the whole earth

Non-Optical Sensors

- Acquired in non-optical spectral regions, e.g. microwave
- Synthetic Aperture Radar (SAR)
- Measure different surface properties than optical images
- E.g. microwave can sense soil moisture and surface roughness

Shuttle Imaging Radar (SIR-C) image of volcano in Galapagos Islands

Rough lava

Smooth lava
The Nature of Remote Sensing

- Introduction
- Remote Sensing Systems
- Remote Sensing Physics
- Sensor Parameters
- Display and Data Systems

Sensor Parameter Space

- number of spectral bands
- GIFOV (m at nadir)

Systems:
- HYDICE
- AVIRIS
- HSI
- V, S
- GIFOV (m at nadir)
- 3.2 km altitude
- 6.1 km altitude
- visible/near infrared
- thermal infrared
- panchromatic
- shortwave infrared
- MODIS
- V, S
- TM
- AVHRR/1
- V, S, T
- AVHRR/2
- V, S, T
- MODIS
- V, S, T
- MISR
- V
- IRS-1C
- LISS-III
- SPOT
- TM
- ETM
- LISS-III
- ASTER
- TM
- ETM
- ASTER
Case Study: MODIS

- **Limit-of-the-art multispectral whiskbroom system**
- 36 spectral bands from visible to thermal on 4 focal planes
- 3 spatial resolutions: 250m, 500m, 1000m
- Diverse applications: land, oceans, atmosphere

MODerate resolution Imaging Spectrometer (MODIS)

<table>
<thead>
<tr>
<th>Geophysical variables</th>
<th>Band</th>
<th>Spectral range (nm)</th>
<th>GIFOV (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land/cloud boundaries</td>
<td>1, 2</td>
<td>620 - 670, 841 - 876</td>
<td>250</td>
</tr>
<tr>
<td>Land/cloud properties</td>
<td>3, 4, 5</td>
<td>459 - 479, 545 - 565, 1230 - 1250</td>
<td>500</td>
</tr>
<tr>
<td>Ocean color</td>
<td>8, 9, 10, 11</td>
<td>405 - 420, 438 - 448, 483 - 493, 526 - 536</td>
<td>1000</td>
</tr>
<tr>
<td>Specific</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vegetation chlorophyll cloud and vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soil, vegetation differences</td>
<td>12</td>
<td>546 - 556</td>
<td>1000</td>
</tr>
<tr>
<td>green vegetation leaf/canopy properties</td>
<td>13</td>
<td>662 - 672</td>
<td>1000</td>
</tr>
<tr>
<td>snow/cloud differences</td>
<td>14</td>
<td>673 - 683</td>
<td>1000</td>
</tr>
<tr>
<td>land and cloud properties</td>
<td>15</td>
<td>743 - 753</td>
<td>1000</td>
</tr>
<tr>
<td>chlorophyll flourescence</td>
<td>16</td>
<td>862 - 877</td>
<td>1000</td>
</tr>
<tr>
<td>aerosol properties</td>
<td>17, 18, 19</td>
<td>890 - 920, 931 - 941, 915 - 965</td>
<td>1000</td>
</tr>
<tr>
<td>aerosol/atmosphere properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cloud/atmosphere properties</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 NASA EOS MODerate resolution Imaging Spectrometer (MODIS)
Case Study: MODIS (cont.)

<table>
<thead>
<tr>
<th>Geophysical variables</th>
<th>Band</th>
<th>Spectral range (µm)</th>
<th>GIFOV (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sea surface temperatures</td>
<td>20</td>
<td>3.66 - 3.84</td>
<td>1000</td>
</tr>
<tr>
<td>forest fires/volcanoes</td>
<td>21</td>
<td>3.929 - 3.989</td>
<td></td>
</tr>
<tr>
<td>cloud/surface temperature</td>
<td>22</td>
<td>3.929 - 3.989</td>
<td></td>
</tr>
<tr>
<td>cloud/ surface temperature</td>
<td>23</td>
<td>4.02 - 4.08</td>
<td></td>
</tr>
<tr>
<td>troposphere temp/cloud fraction</td>
<td>24</td>
<td>4.433 - 4.498</td>
<td></td>
</tr>
<tr>
<td>troposphere temp/cloud fraction</td>
<td>25</td>
<td>4.482 - 4.549</td>
<td></td>
</tr>
<tr>
<td>Atmosphere /clouds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cirrus clouds</td>
<td>26</td>
<td>1.36 - 1.39</td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mid-troposphere humidity</td>
<td>27</td>
<td>6.535 - 6.895</td>
<td></td>
</tr>
<tr>
<td>upper-troposphere humidity</td>
<td>28</td>
<td>7.175 - 7.475</td>
<td></td>
</tr>
<tr>
<td>surface temperature</td>
<td>29</td>
<td>8.4 - 8.7</td>
<td></td>
</tr>
<tr>
<td>total ozone</td>
<td>30</td>
<td>9.58 - 9.88</td>
<td></td>
</tr>
<tr>
<td>cloud/surface temperature</td>
<td>31</td>
<td>10.78 - 11.28</td>
<td></td>
</tr>
<tr>
<td>cloud/surface temperature</td>
<td>32</td>
<td>11.77 - 12.27</td>
<td></td>
</tr>
<tr>
<td>cloud height and fraction</td>
<td>33</td>
<td>13.185 - 13.485</td>
<td></td>
</tr>
<tr>
<td>cloud height and fraction</td>
<td>34</td>
<td>13.485 - 13.785</td>
<td></td>
</tr>
<tr>
<td>cloud height and fraction</td>
<td>35</td>
<td>13.785 - 14.085</td>
<td></td>
</tr>
<tr>
<td>cloud height and fraction</td>
<td>36</td>
<td>14.085 - 14.385</td>
<td></td>
</tr>
</tbody>
</table>

Commercial Systems

<table>
<thead>
<tr>
<th>Country</th>
<th>Company</th>
<th>WWW address</th>
<th>Sensor</th>
<th>GSI (m) pan/multi</th>
<th>GIFOV (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Space Imaging</td>
<td>http://www.spaceimaging.com</td>
<td>IKONOS</td>
<td>1/4</td>
<td>13 x 13, 11 x 1000</td>
</tr>
<tr>
<td></td>
<td>DigitalGlobe</td>
<td>http://www.digitalglobe.com</td>
<td>QuickBird</td>
<td>0.6/2.4</td>
<td>22 x 22, 22 x 200</td>
</tr>
<tr>
<td></td>
<td>Orbital Imaging</td>
<td>http://www.orbimage.com</td>
<td>OrbView-3</td>
<td>1/4</td>
<td>8 x 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EROS-B</td>
<td>0.82</td>
<td>16</td>
</tr>
<tr>
<td>South Korea</td>
<td>-</td>
<td>http://spaceflightnow.com/taurus/kompasat/kompasat.html</td>
<td>KOMPASAT-1</td>
<td>6.6</td>
<td>15</td>
</tr>
<tr>
<td>France</td>
<td>SPOTImage</td>
<td>http://www.spot.com/home</td>
<td>SPOT 1-4</td>
<td>10/20</td>
<td>60/60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPOT 5</td>
<td>2.5,5/10,20</td>
<td></td>
</tr>
</tbody>
</table>
Then and Now

Ronald Reagan Washington National Airport (courtesy Space Imaging Inc.)

IKONOS-P (1m)
SPOT-P (10-m) simulated
ETM-P (15-m) simulated

The Nature of Remote Sensing

- Introduction
- Remote Sensing Systems
- Remote Sensing Physics
- Sensor Parameters
- Display and Data Systems
Spectral Regions

- **Determined by:**
 - "windows" where atmospheric transmittance is relatively high
 - wavelength regions where detector sensitivity is relatively high

<table>
<thead>
<tr>
<th>Name</th>
<th>Wavelength Range (µm)</th>
<th>Radiation Source</th>
<th>Surface Properties of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible (V)</td>
<td>0.4-0.7</td>
<td>solar</td>
<td>reflectance</td>
</tr>
<tr>
<td>Near Infrared (NIR)</td>
<td>0.7-1.1</td>
<td>solar</td>
<td>reflectance</td>
</tr>
<tr>
<td>Short-Wave Infrared (SWIR)</td>
<td>1.1-1.35, 1.4-1.8, 2-2.5</td>
<td>solar</td>
<td>reflectance</td>
</tr>
<tr>
<td>Mid-Wave Infrared (MWIR)</td>
<td>3-4, 4.5-5</td>
<td>solar, thermal</td>
<td>reflectance, temperature</td>
</tr>
<tr>
<td>Thermal Infrared (TIR)</td>
<td>8-9.5, 10-14</td>
<td>thermal</td>
<td>temperature</td>
</tr>
<tr>
<td>Microwave, Radar</td>
<td>1mm-1m</td>
<td>thermal (passive) artificial (active)</td>
<td>Temperature (passive) roughness (active)</td>
</tr>
</tbody>
</table>

Atmospheric Transmittance

- **Atmospheric “windows” result from energy absorption by air molecules**
 - Water vapor (H₂O)
 - Carbon dioxide (CO₂)
 - Ozone (O₃)
 - Others to a lesser extent

![Graph showing atmospheric transmittance](image)
Radiation Sources

- Approximately equal at the top-of-the-atmosphere (TOA) in the Mid-Wave IR (MWIR)

Human Vision

- Sensitive over very small range of total solar spectrum

solar spectrum and human visual sensitivity
Spectral Signatures

- **Vegetation** spectral reflectance has several distinguishing features
 - "red edge" at 720 - 780nm caused by cellular structure
 - Low reflectance in the blue and red caused by chlorophyll absorption; slightly higher reflectance in the green
 - Water absorption features at 1400nm and 1900nm

Spectral Signatures (cont.)

- Soil and geologic minerals show relatively smooth spectral reflectance
 - Water absorption features in soils at 1400nm and 1900nm
 - Narrow molecular absorption features caused by characteristic molecules
Myth of Spectral Signatures

- Idealized characteristic of surface materials is never achieved in practice
 - natural variability
 - atmospheric variability
 - “mixing” of materials
 - shadows
 - bidirectional reflectance distribution function (BRDF)
 - sensor noise
- Nevertheless, spectral signatures are a useful concept

![Graph showing spectra of pixel samples from 3 materials](image.png)
Multitemporal Parameters

- **Meteorology** requires frequent revisits (at least hourly)
- **Agriculture** requires less frequent revisits (weekly)
- **Geology** requires infrequent revisits (every few million years)
 - “events” such as volcanos and landslides are exceptions

<table>
<thead>
<tr>
<th>System</th>
<th>Revisit Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat 1-3</td>
<td>18 days</td>
</tr>
<tr>
<td>Landsat 4-7</td>
<td>16 days</td>
</tr>
<tr>
<td>AVHRR</td>
<td>1 day or 7 hrs</td>
</tr>
<tr>
<td>SPOT</td>
<td>26 days at nadir</td>
</tr>
<tr>
<td></td>
<td>1, or 4-5 days pointing</td>
</tr>
<tr>
<td>IRS-1A, B</td>
<td>22 days</td>
</tr>
<tr>
<td>MODIS</td>
<td>2 days</td>
</tr>
<tr>
<td>GOES</td>
<td>30 min</td>
</tr>
</tbody>
</table>

Scan Parameters

- **Field-Of-View (FOV, radians):** used by system designers
- **Ground-projected FOV (GFOV, km):** used by data users
Scanner Types

In-track pushbroom Pointing pushbroom

Continuous coverage whiskbroom scanner (MODIS)

Pixel Parameters

- **Instantaneous Field-Of-View (IFOV, mrad)**
- **Ground-projected IFOV (GIFOV, m)**
- **Ground Sample Interval (GSI, m)**
 - Also called Ground Sample Distance (GSD)
- **GIFOV and GSI determine geometric “spatial resolution”**
 - Defined at-nadir, “pixel growth” occurs off-nadir
 - Instrument response also affects spatial resolution
Sensor Comparison

- **Whiskbroom**: Landsat Enhanced Thematic Mapper ETM+
- **Pushbroom**: Earth Observer - 1 Advanced Land Imager ALI

Signal-to-Noise Ratio (SNR) - Alaska low-light image, both 30m GIFOV

- Landsat ETM+ (November 2000)
- EO-1 ALI (December 2000)

Sensor Comparison (cont.)

Local geometry - Maricopa, AZ, July 27, 2001

- Landsat-7 ETM+ Level 16 band 1
- EO-1 ALI Level 1R band 2
The Instrument Response

- Any measuring instrument is limited in the degree of detail it can capture
- This limit is referred to as the instrument’s “resolution”
 - widely used, but often misused, term
- Two aspects for remote sensors
 - spatial response
 - spectral response

Spatial Response

- The total system response to a spatial “impulse” signal
- Larger than geometric GIFOV
 - time integration smear (cross-track for whiskbrooms, in-track for pushbrooms)
 - optics blur
 - electronic filters (cross-track for whiskbrooms; not common for pushbrooms)
 - detector electron diffusion, charge transfer inefficiency (pushbrooms)
- The net spatial response is the convolution of all these factors, converted to a common spatial coordinate system
Imaging Simulation

- Example: simulation of Landsat TM imaging
 - Model TM spatial response components (at a common scale)

Imaging Simulation (cont.)

TM spatial response components
Imaging Simulation (cont.)

High resolution aerial photography

- Scanned aerial photograph, GSI = 2m
 - Rotated to align with TM orbit and scan direction

Imaging Simulation (cont.)

- Apply each component of the spatial response and downsample to 30m
 - Optics
 - Optics and GIFOV
 - Optics, GIFOV and electronics
 - Downsample 2m → 30m GSI
Imaging Simulation (cont.)

- Compare to real TM of same area, acquired 4 months later

\[\text{simulated TM} \quad \text{real TM} \]

Spatial Resolution

- A "subpixel" object smaller than the GIFOV can be detected, but not resolved
- Detectability of a subpixel object depends on:
 - object size relative to the sensor GIFOV
 - object radiance contrast to the surrounding background
 - scene noise ("clutter")
 - sensor noise
Detectability

- Low-contrast subpixel targets must be bigger than high-contrast targets for detection

Sampling

- The measured radiance of a subpixel object depends on the location of the object relative to the pixel samples
Spectral Response

- Individual band spectral response determined by
 - detector responsivity
 - filter transmission (discrete spectral band sensors)
 - spectrometer slit width (hyperspectral sensors)

Example spectral response curves - Landsat Thematic Mapper (TM)

Spectral Resolution

- As in the spatial case, the width of the instrument spectral response determines its ability to record detail in the spectral signal

Simulation of TM band measurements of a vegetation spectral signal
Spectral Resolution (cont.)

- Hyperspectral systems with narrow spectral responses (typically about 10nm) are useful for detecting fine spectral detail

![Simulation of spectral doublet measurement with two different spectral resolutions](image)

The Nature of Remote Sensing

- Introduction
- Remote Sensing Systems
- Remote Sensing Physics
- Sensor Parameters
- Display and Data Systems
Image Formats

- **BIS (BIP): Band Interleaved-by-Sample (-Pixel)**
 - lines 1-8
 - bands 1-7
 - samples 1-8

- **BIL: Band Interleaved-by-Line**
 - lines 1-8
 - bands 1-7

- **BSQ: Band Sequential**
 - lines 1-8
 - bands 1-7

File Formats

- **raw**
 - no header

- **geoTIFF**
 - variant of TIFF that includes geolocation information in header (http://remotesensing.org/geotiff/geotiff.html)

- **HDF**
 - Hierarchical Data Format (http://hdf.ncsa.uiuc.edu/)
 - self-documenting, with all metadata required to read an image file contained within the image file
 - variable length subfiles
 - NASA specific version: EOS-HDF (http://hdf.ncsa.uiuc.edu/hdfeos.html)

- **NITF**
 - Department of Defense
Display Systems

- **Digital Numbers (DNs)** are image data
- **Grey Levels (GLs)** are numerical display values
- **Look-Up Tables (LUTs)** map DNs → GLs and change image brightness, contrast and colors
 - Actual displayed colors depend on the color response characteristics of the display system

![Display System Architecture](image)

Color Composites

- Composite any three sensor bands into RGB
- **Color IR (CIR) mode** approximates CIR film spectral response
 - Interpretation key:
 - red = vegetation
 - grey, yellow = soils
 - blue, black = water

Generic Composites

<table>
<thead>
<tr>
<th>Display Color</th>
<th>Color Mode</th>
<th>TrueColor (TC)</th>
<th>Color IR (CIR)</th>
<th>False Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red (R)</td>
<td>Red</td>
<td>Red</td>
<td>NIR</td>
<td>Any</td>
</tr>
<tr>
<td>Green (G)</td>
<td>Green</td>
<td>Red</td>
<td>Red</td>
<td>Any</td>
</tr>
<tr>
<td>Blue (B)</td>
<td>Blue</td>
<td>Green</td>
<td>Green</td>
<td>Any</td>
</tr>
</tbody>
</table>

Sensor-Specific Composites

<table>
<thead>
<tr>
<th>Composite</th>
<th>MSS</th>
<th>TM</th>
<th>SPOT</th>
<th>AVIRIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>NA</td>
<td>3,2,1</td>
<td>NA</td>
<td>27,17,7</td>
</tr>
<tr>
<td>CIR</td>
<td>4,2,1</td>
<td>4,3,2</td>
<td>3,2,1</td>
<td>51,27,17</td>
</tr>
</tbody>
</table>
Color Composite Example

- **TM2**
- **TM3**
- **TM4**
- **Color IR (CIR)**
- **TM1**
- **TM2**
- **TM3**
- **True Color (TC)**

Data Processing Systems

- **“Standard” types of preprocessing**
 - radiometric calibration
 - geometric calibration
 - noise removal
 - formatting

- **Generic description**
 - Level 0: raw, unprocessed sensor data
 - Level 1: radiometric (1R or 1B) or geometric processing (1G)
 - Level 2: derived product, e.g. vegetation index

Generally, higher levels of processing cost more!