

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

 Remote sensing requires Active or passive source Target Medium (typically lossy) Sensor (optics, detector) Source radiation modeled as a traveling wave Time-harmonic C = λN C = 2.998 x 10⁸ m/s λ is the wavelength v is the frequency Also, wavenumber 1/λ cm⁻¹ EM spectrum is infinite and continuous 	 Energy interacts with matter Reflection (Scattering) Transmission Absorption (Re-emmitted) Sensor characteristics Spatial (Ground Sample Interval) Spectral (Range and width) Temporal (Revisit time) Radiometric (Precision)
--	---

CASE STUDY: MODIS

Limit-of-the-art multispectral whiskbroom system

- 36 spectral bands from visible to thermal on 4 focal planes
- 3 spatial resolutions: 250m, 500m, 1000m
- Diverse applications: land, oceans, atmosphere

THE NATURE OF REMOTE SENSING

NASA EOS MODerate resolution Imaging Spectrometer (MODIS)

FALL 2005

Geophysical variables			Spectral range	GIFOV
General	Specific	Band	(nm)	(m)
Land/cloud boundaries	vegetation chlorophyll cloud and vegetation	1 2	620 - 670 841 - 876	250
Land/cloud properties	soil, vegetation differences green vegetation leaf/canopy properties snow/cloud differences land and cloud properties	3 4 5 6 7	459 - 479 545 - 565 1230 - 1250 1628 - 1652 2105 - 2155	500
0cean color	chlorophyll observations	8 9 10 11	405 - 420 438 - 448 483 - 493 526 - 536	1000
	sediments	12	546 - 556	1
	sediments, atmosphere	13	662 - 672	1
	cholorophyll flourescence	14	673 - 683]
	aerosol properties	15	743 - 753	1
	aerosol/atmosphere properties	16	862 - 877	1
Atmosphere/clouds	cloud/atmosphere properties	17 18 19	890 - 920 931 - 941 915 - 965	

19

6	eophysical variables	Band	Spectral range	GIFOV (m)
General	Specific		(µm)	
Thermal	sea surface temperatures	20	3.66 - 3.84	1000
	forest fires/volcanoes	21	3.929 - 3.989	
	cloud/surface temperature	22	3.929 - 3.989	
	cloud/ surface temperature	23	4.02 - 4.08	
	troposphere temp/cloud fraction	24	4.433 - 4.498]
	troposphere temp/cloud fraction	25	4.482 - 4.549	
Atmosphere /clouds	cirrus clouds	26	1.36 - 1.39	
Thermal	mid-troposphere humidity	27	6.535 - 6.895	1
	upper-troposphere humidity	28	7.175 - 7.475	
	surface temperature	29	8.4 - 8.7	
	total ozone	30	9.58 - 9.88	1
	cloud/surface temperature	31	10.78 - 11.28	1
	cloud/surface temperature	32	11.77 - 12.27	
	cloud height and fraction	33	13.185 - 13.485	1
	cloud height and fraction	34	13.485 - 13.785	
	cloud height and fraction	35	13.785 - 14.085	
	cloud height and fraction	36	14.085 - 14.385	

Country	Company	WWW address	Sensor	GSI (m) pan/multi	GFOV (km)
USA	Space Imaging	http://www.spaceimaging.com	IKONOS	1/4	13 x 13, 11 x 1000
	DigitalGlobe	http://www.digitalglobe.com	QuickBird	0.6/2.4	22 x 22, 22 x 200
	Orbital Imaging	http://www.orbimage.com	OrbView-3	1/4	8 x 8
Israel	ImageSat	http://www.imagesatintl.com	EROS-A EROS-B	1.8 0.82	12.5 16
South Korea	-	http://spaceflightnow.com/tau rus/kompsat/991220kompsat. html	KOMPSAT-1	6.6	15
France	SPOTImage	http://www.spot.com/home	SPOT 1-4 SPOT 5	10/20 2.5,5/10,20	60/60

THEN AND NOW

Ronald Reagan Washington National Airport (courtesy Space Imaging Inc.)

IKONOS-P (1m)

THE NATURE OF REMOTE SENSING

SPOT-P (10-m) simulated

23

ETM-P (15-m) simulated

FALL 2005

 "windows" w wavelength high 	y: here atmosp regions wher	heric transmitta e detector sensit	nce is relatively h tivity is relatively
Name	Wavelength Range (µm)	Radiation Source	Surface Properties of Interest
Visible (V)	0.4-0.7	solar	reflectance
Near Infrared (NIR)	0.7-1.1	solar	reflectance
Short-Wave Infrared (SWIR)	1.1-1.35 1.4-1.8 2-2.5	solar	reflectance
Mid-Wave Infrared (MWIR)	3-4 4.5-5	solar, thermal	reflectance, temperature
Thermal Infrared (TIR)	8-9.5 10-14	thermal	temperature
Microwave, Radar	1mm-1m	thermal (passive) artificial (active)	Temperature (passive) roughness (active)

FILE FORMATS	
• raw	
- no header	
• geoTIFF	
 variant of TIFF that includes geolocation information in header (http://remotesensing.org/geotiff/geotiff.html) 	
• HDF	
- Hierarchical Data Format (http://hdf.ncsa.uiuc.edu/)	
 self-documenting, with all metadata required to read an image file contained within the image file 	
- variable length subfiles	
 NASA specific version: EOS-HDF (http://hdf.ncsa.uiuc.edu/hdfeos.html) 	
• NITF	
 National Imagery Transmission Format (http://remotesensing.org/gdal/frmt_nitf.html) 	
- Department of Defense	
THE NATURE OF REMOTE SENSING 54	FALL 2005

• Con • Cole spe - ii	nposite or IR (C ctral re nterpreta • red = va	COLOR any thre IR) mode sponse ation key: egetation	COMF e sensor e approx	POSITE bands i imates (generic c TrueColor	ES into RGB CIR film omposites Color Mode Color IR	False
	• grey, yellow = soils • blue, black = water		Color Red (P)	(TC) Red	(CIR)	Color
				Силон	NIK	Any
			Green (G)	Green	кеа	ANY
			Blue (B)	Blue	Green	Any
0	composite	sensor-s	specific com TM	oosites SPOT	AVIRIS	
T	<u>(</u>	NA	321	NA	27 17 7	-
	TIR	421	432	321	51 27 17	
			·,-,=	-,-,-	,-,-,-1	
THE NATURE O	F REMOTE SEN	SING	56			FALL 20

