

	t colo			doctorial inc.				
		continuum removal internal average rel- ative reflectance (ARR)		scale each picel's spectrum by a constant such that the value in a selected band equals the maximum value in that band for the entire scene subtract the average normalized radiance in each band over the entire scene from the normalized radiance in each band			nd , 1983)	
				generate a piecewise-linear or polynomial continuum across "peaks" of image spec- trum and divide each pixel's spectrum by the continuum divide each pixel's spectrum by the aver- age spectrum of the entire scene		(Clark and Roush, 1984)		
						(Kruse, 1988) (Kruse et al., 1990)		
	empirical line		band-by-band linear regression of pixel samples to field reflectance spectra for dark and bright targets					
		flat-field		divide each pixel's spectrum by the aver- age spectrum of a spectrally-uniform, high reflectance area in the scene			ıl., 1991)	
effe	ctivene	ss of	varioi	ıs normaliza	tion t	echni	ques for	calibration
tec	hnique view radi al images		-path iance	topography	so irrad	lar liance	atmospher transmitta	n ric nce
residu			/	1		/	1	
con	tinuum noval		x	x		/	x	
L	ARR		x	X		/	1	
empi	npirical line		/	X	1	/	1	
fla			x	X		/	1	

DISTORTION TYPES											
• The coefficients in the polynomial can be associated with particular types of distortion			***		***						
coefficient	warp component		original	shift	scale in x						
a ₀₀	shift in x										
b 00	shift in y		3338	- 2238							
a10	scale in x										
b ₀₁	scale in y			v-denendent	avadratic						
a ₀₁	shear in x	rotation ¹⁰	shear	scale in x	scale in x						
b10	shear in y		-	-	n						
a ₁₁	y-dependent scale in x				<i>6</i> 9						
b11	x-dependent scale in y										
a20	nonlinear scale in x			· 2							
b ₀₂	nonlinear scale in y		rota	ation qua	dratic						
CORRECTION	AND CALIBRATION		40		FALL 2005						

