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ECE/OPTI 531 – Image Processing Lab for Remote Sensing Fall 2005

Correction and CalibrationCorrection and Calibration

Reading: Chapter 7, 8.1–8.3Reading: Chapter 7, 8.1–8.3
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Preprocessing

• Required for certain sensor characteristics and
systematic defects

• Includes:
– noise reduction
– radiometric calibration
– distortion correction

• Usually performed by the data provider, as
requested by the user (see Data Systems)



2

Fall 2005Correction and Calibration 3

Correction and Calibration

• Noise Reduction
• Radiometric Calibration
• Distortion Correction
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Noise Reduction

• Requires knowledge of noise characteristics
• Since noise is usually random and unpredictable,

we have to estimate its characteristics from
noisy images

• Global Noise
– Random DN variation at every pixel
– LPFs will reduce this noise, but also smooth image
– Edge-preserving smoothing algorithms attempt to

reduce noise and preserve signal
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• Average moving window pixels that are within a
threshold difference from the DN of the center
pixel,

c

c

edge feature

5 x 5 window:

row m, column n 

row m, column n+1

c

c

crow m, column n+2

line feature

only the green 

pixels are 

averaged for 

the output 

pixel c

sigma filter near edges and lines

Sigma Filter
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Nagao-Matsuyama Filter

• Calculate the variance of 9 subwindows within a
5×5 moving window

• Output pixel is the mean of the subwindow with
the lowest variance

c

c c c c

c c cc
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Example: SAR Noise Reduction

original 5 x 5 LPF 5 x 5 sigma (k=2) Nagao-Matsuyama
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Noise Reduction (cont.)

• Local Noise
– Individual bad pixels or lines
– Often DN = 0 (“pepper”), 255 (“salt”) or 0 and 255

(“salt and pepper”)
– Median filter reduces local noise because it is

insensitive to outliers (Chapter 6)
• For bad lines, set filter window vertical
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Example: Bad-line Removal

single noisy partial scanline
(Landsat MSS)

after 3 x 1 median filter

horizontal 
image details 
also removed
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Selective Median Filter

• Detection by spatial correlation
– Use global spatial correlation statistics to limit median

filter
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Selective Median Filter (cont.)

horizontal 
image details 

preserved
98% threshold mask

for median filter
after 3 x 1 selective 

median filter
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PCT Component Filter
• Detection by spectral correlation

– Use PCT to isolate spectrally-uncorrelated noise into
higher order PCs

– Remove noise and do inverse PCT
TM2 TM3 TM4

PC1 PC2 PC3

noise from TM3
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Periodic (Coherent) Noise

• Repetitive pattern, either consistent throughout
the image (global) or variable (local)

• Destriping
– Striping is caused by unequal detector gains and

offsets in whiskbroom and pushbroom scanners
– Destripe before geometric processing
– Global, linear detector matching

• Adjust pixel DNs from each detector i to yield the same
mean and standard deviation over the whole image

– Nonlinear detector matching
• Adjust each detector to yield the same histogram over the

whole image (CDF reference stretch)
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Periodic Noise (cont.)

• Spatial filtering
approaches
– Detector striping causes

characteristic “spikes”
in the Fourier transform
of the image

– For line striping, the
spike is vertical along
the v-axis of the Fourier
spectrum

– A “notch” amplitude
filter (removes selected
frequency components)
can reduce striping
without degrading
image

FT

FT -1

design
filter

phase
spectrum

amplitude
spectrum

noisy

cleaned
image

image

data flow for amplitude Fourier filtering
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Destriping Examples

original spectrumnoisy image

striping notch-filter

striping and within-line-filter

removed noise

removed noise
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Automatic Destriping
• “Automatic” periodic noise

filter design
– Attempt to avoid manual

noise identification in
spectrum

– Requires two thresholds

1. Apply “soft” (Gaussian) high-pass filter to noisy
image to remove image components

2. Threshold HPF-filtered spectrum to isolate noise
frequency components

3. Convert thresholded spectrum to 0 (noise) and 1 (non-
noise) to create noise amplitude notch filter

4. Apply filter to noisy image

Automatic Periodic Noise Filter

HPF spectrum noise filter

cleaned image removed noise
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1 row x 101 column LPF

33 row x 1 column HPF

1 row x 31 column LPF

*

*

*

!

noisy
image

cleaned
image

Debanding

• Use combination of LPFs and HPFs (Crippen,
1989)
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Example: TM Debanding

original

water-masked

101 column LP 33 row HP

31 column LP water-masked

filtered

water-masked
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Correction and Calibration

• Noise Reduction
• Radiometric Calibration
• Distortion Correction
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Radiometric Calibration
• Many remote sensing

applications require
calibrated data
– comparison of

geophysical variables
over time

– comparison of
geophysical variables
derived from different
sensors

– generation of
geophysical variables
for input to climate
models

• Extent of calibration
depends on the desired
geophysical parameter
and available resources
for calibration

at-sensor radiance

surface reflectance

DN

sensor
calibration

• cal_gain and cal_offset
  coefficients

atmospheric
correction

• image measurements

• ground measurements

• atmospheric models

solar and 

correction

 • solar exo-atmospheric

surface radiance

topographic

 • DEM

   spectral irradiance

 • solar path atmospheric  
   transmittance

• view path atmospheric 
   transmittance

 • down-scattered radiance

• view path atmospheric
   radiance
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Sensor Calibration

• Calibrate sensor gain and offset in each band
(and possibly for each detector) to get at-sensor
radiance

• Use pre-launch or post-launch measured gains
and offsets

pre-flight TM calibration coefficients
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Atmospheric Correction

• Estimate atmospheric path radiance and view-
path transmittance to obtain at-surface
radiance (sometimes called surface-leaving
radiance)

– Solve for at-surface radiance

– In terms of calibrated at-sensor satellite data

At-sensor:

Earth-surface:

Earth-surface:
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In-Scene Methods

• Path radiance can be estimated with the Dark
Object Subtraction (DOS) technique
– In-scene method assumes dark objects have zero

reflectance, and any measured radiance is attributed to
atmospheric path radiance only

– Subject to error if object has even very low reflectance
– View-path atmospheric transmittance is not corrected

by DOS

1. Identify “dark object” in the scene
2. Estimate lowest DN of object,
3. Assume
4. DN values (calibrated to at-sensor radiance) within

the dark object assumed to be due only to atmospheric
path radiance

5. Subtract      from all pixels in band b

Dark-Object Subtraction
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Atmospheric Modeling

• DOS can be improved by incorporating
atmospheric models
– Reduces sensitivity to dark object characteristics
– For example, coarse atmospheric characterization

(Chavez, 1989)

– Can also fit DN0b with λ-K function to determine K, and
use fitted model instead of DN0b

• View-path atmospheric transmittance can be
estimated using atmospheric models, such as
MODTRAN
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Atmospheric Modeling (cont.)

• Atmospheric modeling requires knowledge of
many parameters
– Imaging geometry
– Atmospheric profile and aerosol model
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Solar Geometry and Topography

• Further calibration to reflectance requires 3
more parameters

– solar path atmospheric transmittance (from model or
measurements)

– exo-atmospheric solar spectral irradiance (known)
– incident angle (from DEM)
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Example: MSI Calibration

• Partial calibration with correction for sensor
gains and offsets and DOS

band
1

2

3

DN at-sensor radiance scene radiance

(blue)

(green)

(red)

note the 

strong 

correction for 

Rayleigh 

scattering
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Example: Partial Calibration

band

1

2

3

DN at-sensor radiance scene radiance

4

5

7

(blue)

(green)

(red)

(NIR)

(SWIR)

(SWIR)

Rayleigh 

scattering 

correction

low solar 

irradiance
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Hyperspectral Normalization

• Calibration of hyperspectral imagery is
particularly important because:
– High sensitivity to narrow atmospheric absorption

features or the edges of broader spectral features
– Spectral band shift in operating sensor
– Need for precise absorption band-depth measurements
– Computational issues

• A number of “normalization” techniques that
use scene models have been developed to
partially calibrate hyperspectral data
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Normalization (cont.)

effectiveness of various normalization techniques for calibration
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Example: HSI Normalization

• Radiance normalized by flat
field and IARR techniques

AVIRIS at-sensor radiance
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Example (cont.)

• Radiance normalized by flat fielding, compared
to reflectance data
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Example (cont.)

• Radiance normalized by continuum removal
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Correction and Calibration

• Noise Reduction
• Radiometric Calibration
• Distortion Correction
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Distortion Correction

• Applications
– correct system distortions
– register multiple images
– register image to map

• Three components to warping process
– selection of suitable mathematical distortion model(s)
– coordinate transformation
– resampling (interpolation)

1. Create an empty output image (which is in the
reference coordinate system)

2. Step through the integer reference coordinates, one at
a time, and calculate the coordinates in the distorted
image (x,y) by Eq. 7-27

3. Estimate the pixel value to insert in the output image
at (xref,yref) from the original image at (x,y)
(resampling)

Distortion Correction Implementation
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Definitions

• Registration:  The alignment of one image to
another image of the same area.

• Rectification:  The alignment of an image to a
map so that the image is planimetric, just like
the map. Also known as georeferencing.

• Geocoding:  A special case of rectification that
includes scaling to a uniform, standard pixel GSI.

• Orthorectification:  Correction of the image,
pixel-by-pixel, for topographic distortion.
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Example: TM Rectification

Original (Tucson, AZ)

Rectified

fill

Speedway

Speedway
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Coordinate Transformation

• Coordinates are mapped from the reference
frame to the distorted image frame

– “Backwards” mapping (xref,yref) —> (x,y) avoids “holes”
or overlaying of multiple pixels in the processed image

reference frame image frame

column

row

column

row

(x,y)

(xref,yref)
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Polynomial Distortion Model

• Generic model useful for registration,
rectification and geocoding

• Known as a “rubber sheet stretch”
• Relates distorted coordinate system (x,y) to the

reference coordinate system (xref,yref)

• For example, a quadratic polynomial is written
as:
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Distortion Types

• The coefficients in the
polynomial can be
associated with
particular types of
distortion

original shift scale in x

shear
y-dependent

scale in x
quadratic
 scale in x

rotation quadratic
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Affine Transformation

• A linear polynomial (number of terms K = 3)
– Special case that can include:

• shift
• scale
• shear
• rotation

– In vector-matrix notation
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Piecewise Polynomial Distortion

• For severely-distorted
images that can’t be
modeled with a single,
global polynomial of
reasonable order

Example airborne scanner image

affine
correction

quadratic
correction

a

b

c

d

A

B

C

D

a

b

c

d

A

B

C

D

piecewise quadrilateral warping

piecewise triangle warping

reference frame distorted frame
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Application to Wide FOV Sensors

• Comparison of actual distortion to global
polynomial model
– accurate for small FOV sensors such as Landsat, but not

for large FOV scanners such as AVHRR
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Ground Control Points (GCPs)

• Use to control the polynomial, i.e. to determine
its coefficients
– Characteristics:

• high contrast in all images of interest
• small feature size
• unchanging over time
• all are at the same elevation (unless topographic relief is

being specifically addressed)
– Often located by visual examination, but can be

automated to varying degree, depending on the
problem
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Automatic GCP Location

• Use image “chips”
– Small segments that contain one easily identified and

well-located GCP
• Normalized cross-correlation between template

chip T (reference) and search area S in image to
be registered

– normalization adjusts for changes in mean DN within
area
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Area Correlation

i,j = 0,0 i,j = 0,1

distorted imagereference  image

+

+

+

+

+

+

T1

T2

T3

S1

S2

S3

target area T

search area S

two relative shift positions

Chip layout over full scene

Cross-correlation of one areasearch chip

search chip

target chip

target chip
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Finding Polynomial Coefficients

• Set up system of simultaneous equations using
GCPs and solve for polynomial coefficients

• Example with quadratic polynomial (number of
terms K = 6)
– Given M pairs of GCPs
– For each GCP pair, m, create two equations

– Then, for all M GCP pairs, in vector-matrix notation
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Solving for Coefficients

• So, for each set of GCP x- and y-coordinate pairs,
we can write a linear system
– Determined case (M = K, just enough GCPs) solution:

• Exact solution which passes through GCPs, i.e. they are
mapped exactly

– Overdetermined case (M > K, more than enough GCPs):

•                      is called the pseudoinverse of W
• solution results in least-squares minimum error at GCPs:

M = K: solution:

M ≥ K: solution:
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Example: 1-D Curve Fitting
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Example: Registration

• Register aerial photo
to map in an urban
area

• Locate 6 GCPs in each
(black crosses)

• Locate 4 Ground Points
(GPs) in each (red
circles)
– not used for control,

only for testing

GCP1

GCP5

GCP6

GCP2

GCP1

GCP2

GCP3 GCP4

GCP5

GCP6

GCP3 GCP4

aerial
photo (x,y)

map
reference
(xref,yref)
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GCP Error
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GCP Refinement

• Analyze GCP error and remove outliers
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Final Registration Result
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Resampling

• The (x,y) coordinates calculated by
are generally between the integer pixel
coordinates of the array

• Therefore, must estimate (interpolate or
resample) a new pixel at the (x,y) location

reference frame image frame

column

row

column

row

DN(xref,yref)

DNr(x,y)
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Resampling (cont.)

• Pixels are resampled using a
weighted-average of the
neighboring pixels

• Common weighting functions:
– nearest-neighbor: fast, but

discontinuous

– bilinear: slower, but continuous
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• Implement 2-D bilinear
resampling as two successive
1-D resamplings
– resample E between A and B
– resample F between C and D
– resample DN(x,y) between E

and F

resampling distances
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Resampling (cont).
– bicubic: slowest, but results in sharpest image

• piecewise polynomial; special case of Parametric Cubic
Convolution (PCC)

where Δ is the distance from (x,y) to the grid points in 1-D
• “standard” bicubic is α = -1; superior bicubic is α = -0.5
• High-boost filter characteristics; amount of boost depends on

amplitude of side-lobe, which is proportional to α
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PCC Resampling

• PCC resampling procedure
– resample along each row, A-D, E-H, I-L, M-P

etc.
– resample along new column Q-T
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Example: Magnification (“Zoom”)

nearest-neighbor bilinear

1×

2×

3×
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Example: Rectification

nearest-neighbor bilinear

PCC (α = -0.5) PCC (α = -1.0)
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Interpolation Quality

nearest-neighbor

bilinear

resampled 
image surface 
plots (4x zoom)

parametric cubic convolution
(α = -0.5)
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Resampling Differences

• Difference images between different resampling functions

– polynomial distortion model affects global geometric accuracy
– resampling function affects local radiometric accuracy

nearest-neighbor – bilinear bilinear – PCC


