2-D LINEAR SYSTEM EXAMPLES

Example 1: desktop scanner

- **input signal (photo):** \(f(x, y) = \frac{1}{2} + \cos(2\pi x^2) \)

- “chirp” function

- frequency of pattern increases as \(x \) increases (\(u = x \))
 - this pattern therefore “maps” the spatial frequency dimension onto a spatial dimension for visualization
• **Scan with 2 different-sized square spots (detectors)**

 • **scan spot 1:** \(h(x, y) = \frac{1}{W^2} \text{rect}\left(\frac{x}{W}, \frac{y}{W}\right) \)

 • **scan spot 2:** \(h(x, y) = \frac{1}{4W^2} \text{rect}\left(\frac{x}{2W}, \frac{y}{2W}\right) \)

• **output signal (scanned photo):** \(g(x,y) = f(x,y) \ast \ast h(x,y) \)
Square scan spot 1

Spatial frequency, \(u = \lambda \)

Input pattern

Output pattern

1st zero (\(u = 1/W \))

2nd zero (\(u = 2/W \))

"Spurious" resolution (\(\pi \) phase shift)
square scan spot 2

input pattern

output pattern

spatial frequency, $u = x$

1st zero ($u = \frac{1}{2W}$) 2nd zero ($\frac{2}{2W}$) 3rd zero ($\frac{3}{2W}$)

"spurious" resolution (π phase shift)
• **Scan with 2 different-sized Gaussian spots**

 - **scan spot 1:** \[h(x, y) = \frac{1}{W^2} \text{gaus} \left(\frac{x}{W}, \frac{y}{W} \right) \]

 - **scan spot 2:** \[h(x, y) = \frac{1}{4W^2} \text{gaus} \left(\frac{x}{2W'}, \frac{y}{2W} \right) \]
Gaussian scan spot 1

input pattern

spatial frequency, \(u = x \)

output pattern

"effective" cutoff frequency
Gaussian scan spot 2

input pattern

output pattern

spatial frequency, $u = \lambda$

"effective" cutoff frequency
Example 2: digital image processing

- **input signal (digital image):**

- **scan with various impulse responses** $h(x,y)$ **representing an (unspecified) LSI system**
 - represent $h(x,y)$ by small, discrete array of “weights”
 - approximate continuous convolution by discrete convolution between digital image and weight array
• Low-pass box-filter

• continuous impulse response: \(h_{LP}(x, y) = \frac{1}{W^2} \text{rect} \left(\frac{x}{W}, \frac{y}{W} \right) \)

• discrete approximation \((W = 3)\): \(h_{LP}(x, y) = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \)

 • sum of weights = 1
 • preserves signal mean
Low-pass box-filter

- **Input**
- **Output**
 - 3×3
 - 5×5
 - 7×7

The filter removes high-frequency content (micro-contrast: edges, lines, details) and keeps low-frequency content (macro-contrast: shading).
• **High-pass box-filter**

 • *continuous impulse response:*

 \[
 h_{HP}(x, y) = \delta(x, y) - \frac{1}{W^2} \text{rect}\left(\frac{x}{W}, \frac{y}{W}\right)
 \]

 \[
 = \delta(x, y) - h_{LP}(x, y)
 \]

 • *discrete approximation (W = 3):*

 \[
 h_{HP}(x, y) = \frac{1}{9} \cdot \begin{bmatrix}
 -1 & -1 & -1 \\
 -1 & 8 & -1 \\
 -1 & -1 & -1
 \end{bmatrix}
 \]

 • *sum of weights = 0*

 • *zeros signal mean*
High-pass box-filter

- **3 x 3**
- **5 x 5**
- **7 x 7**

removes low-frequency content, keeps high-frequency content.
High-boost box-filter

- **continuous impulse response:**
 \[h_{HB}(x, y) = 2\delta(x, y) - \frac{1}{W^2} \text{rect}\left(\frac{x}{W}, \frac{y}{W}\right) \]

 \[= \delta(x, y) + h_{HP}(x, y) \]

- **discrete approximation \((W = 3)\):**
 \[h_{HP}(x, y) = \frac{1}{9} \cdot \begin{bmatrix} -1 & -1 & -1 \\ -1 & 17 & -1 \\ -1 & -1 & -1 \end{bmatrix} \]

- **sum of weights = 1**
- **preserves signal mean**
preserves low-frequency content, boosts high-frequency content

“sharpens” image
Example 3: optical image formation (incoherent light)

- An imaging system is a **LPF of spatial frequency components in the input object**
- the image is a blurred copy of the object
- \(h(x, y) \) depends on the parameters and quality of the optical system