A TIME-SCALE METHOD FOR MODEL REDUCTION OF DISCRETE-TIME SYSTEMS

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of
Doctor of Technical Sciences

presented by
Essameddin BADREDDIN
Dipl.Electr.Eng.ETH
born June 10, 1951
Egyptian citizen

accepted on the recommendation of
Prof. Dr. M. Mansour, referee
Prof. Dr. W. Schaufelberger, co-referee

ADAG Administration & Druck AG

Zurich 1982
VIII.7. Minimization of equation error for discrete-time systems

A model reduction method based on the minimization of equation error has been proposed by Eitelberg (1978) for continuous-time linear systems. In the following, the version for discrete-time systems will be developed.

Given the n-th order linear-discrete-time system described by

\[x(k+1) = Ax(k) + Bu(k) \]
\[y(k) = cx(k) \]

We assume that the m-th order reduced model is described by

\[\tilde{x}(k+1) = A_r \tilde{x}(k) + B_r u(k) \]

The states of interest \(x_r \) could be "picked-out" from the original state vector by means of a \((m \times n)\) "masking matrix" \(R \) with the elements 1 and zero such that

\[x_r = Rx \]

It's now required to represent the m-dimensional state vector \(x_r \) by the m-th order reduced model, i.e. for \(\tilde{x} \approx x_r \), we may write

\[x_r(k+1) \approx A_r x_r(k) + B_r u(k) \]

We write the equation error as

\[e(k+1) = x_r(k+1) - A_r x_r(k) - B_r u(k) \]
For \(x(0) = 0 \), \(x_r(0) = 0 \), \(u(k) \equiv \) step function = \[\begin{cases} u_0, & k \geq 0 \\ 0, & k < 0 \end{cases} \]

the equation error becomes

\[
e(k+1) = Rx(k+1) - A_r Rx(k) - B_r U_0
\]

\[
= (RA_r - A_r R)x(k) + (RB_r - B_r)U_0
\]

(8.22)

But \(x(k) = A^k x(0) + \sum_{i=1}^{k} A^{i-1} B u(k-i) \)

and since, by assumption, \(x(0) = 0 \), \(u(k) = U_0 \) for \(k \geq 0 \), then

\[
x(k) = \sum_{i=1}^{k} A^{i-1} B U_0
\]

(8.23)

substituting from (8.23) into (8.22), we obtain

\[
e(k+1) = (RA_r - A_r R) \sum_{i=1}^{k} A^{i-1} B U_0 + (RB_r - B_r)U_0
\]

(8.24)

In (8.24), \(U_0 \) is just a scaling factor and will be dropped defining

\[
E(k) = (RA_r - A_r R) \sum_{i=1}^{k} A^{i-1} B + (RB_r - B_r)
\]

\[= (RA_r - A_r R) \sum_{j=0}^{k-1} A^j B + RB_r\]

Assuming \(A \) is stable, then the above matrix-series will converge and we may write

\[E(k) = (RA_r - A_r R)(I - A^k)(I - A)^{-1} B + RB_r\]

(8.25)
The stationary value of x is obtained from (8.23) by letting k tends to infinity, i.e.

$$x_{st} = x(\infty) = \lim_{j=0}^{\infty} A^j B U_0 = (I-A)^{-1} B U_0$$

which exists for all stable A.

We wish to have

$$x_{r \ st} = R x_{st} \ , \ i.e.$$

$$R(I-A_r)^{-1} B_r U_0 = R(I-A)^{-1} B U_0 \quad (8.26)$$

From (8.25) yields B_r that matches the steady-state response of the original states and those of the reduced model.

$$B_r = (I-A_r)R(I-A)^{-1} B \quad (8.27)$$

Substituting from (8.27) into (8.25), and after few algebraic manipulations, we obtain

$$E(k) = [R-(I-A_r)R(I-A)^{-1}]A^k B \quad (8.28)$$

Now, we wish to determine A_r that minimizes the "error measure"

$$q = \sum_{k=o}^{\infty} \| E(k) \|^2$$

which can be rewritten as

$$q = \sum_{k=o}^{\infty} \text{trace} \{ E(k) E^T(k^l) \} \quad (8.29)$$
But, \(E(k)E^T(k) = [R-(I-A_r)R(I-A)^{-1}]A^kBB^T A^k^T \[R-(I-A_r)^{-1}] \]

then

\[q = \text{trace} \ P S P^T \] \hspace{1cm} (8.30)

where

\[P = [R-(I-A_r)R(I-A)^{-1}] \]

\[S = \sum_{k=0}^{\infty} A^kBB^T A^k^T \]

Differentiating \(q \) after \(A_r \) and letting, \(\frac{dq}{dA_r} = 0 \), we obtain the optimal matrix \(A_r^* \)

\[A_r^* = I-RSD^TDSD^T \] \hspace{1cm} (8.31)

where

\[D = R(I-A)^{-1} \]

\(S \) is the solution of the discrete-Lyapunov equation

\[ASA^T-S = -BB^T \] \hspace{1cm} (8.32)

The reduced model is obtained by first solving equation (8.32) for \(S \) then substituting in (8.31) to obtain \(A_r^* \). Substitution in (8.27) yields the input matrix \(B_r \).