1) Deadbeat Response:

Given the discrete transfer function:

\[G(z) = \frac{(z+0.5)(z-0.5)}{z^4} \]

a) Simulate this system's response to a step input over five steps:

\[u(t) = \varepsilon(t) \rightarrow y(t) = ? \]

(This can be done either in the frequency domain by using the
modified partial fraction expansion on \(G(z) \), or in the time-domain, e.g.
in controller-canonical form.)

b) By generalizing the result from (a), prove that the step
response of any discrete-time
system of the deadbeat type
reaches its steady-state value
at the latest after \(n \) steps
where \(n \) is the order of
the system. (The proof is
possible in the frequency or time domain.)
2) **Controllability & Observability**:

Given the discrete-time system:

\[
\begin{align*}
\dot{x}(k+1) &= \begin{bmatrix} \Phi & 1 \\ 0.24 & -0.2 \end{bmatrix} x(k) + \begin{bmatrix} \Phi \\ 1 \end{bmatrix} u \\
y(k) &= \begin{bmatrix} K & 1 \end{bmatrix} x(k)
\end{align*}
\]

a) For which values of \(K \) (if any) does this system lose its full controllability?

b) For which values of \(K \) (if any) does this system lose its full observability?

c) For the values of \(K \) found under (a) and (b), find the transfer function. What do you notice?
3) **Functional Observer Design:**

Given the open-loop system:

\[G(z) = \frac{1}{(z+1)(z-2)(z-3)(z+4)} \]

which is highly unstable.

(a) Find a functional observer which will place the poles of the closed-loop system all at the origin. The three observer poles are to be placed at \(z = -0.5, \pm 0.5j \frac{3}{2} \).

(b) Write a program segment of a discrete controller that will implement the functional observer as designed under (a).