8-4 For the digital space vehicle control system shown in Fig. P7-8, let $J_o = 41822$ and $T = 0.1$ s. Set the relation between K_R and K_P so that the ramp-error constant is 10. Sketch the Nyquist plot of an equivalent $G(z)$ that has K_R as a multiplying factor. Determine the ranges of K_P, K_R so that the system is stable using the Nyquist criterion.

![Block diagram diagram](image)

Figure P7-8.

I suggest, you work in the w-plane, construct a Bode diagram first by straight-line approximation, then sketch the Nyquist diagram (still in the w-plane) from it. Then you use the Nyquist criterion to determine the border of stability.
8-16 For the Large Space Telescope control system described in Problem 4-10, Fig. P4-10, let \(K_R = 731,885 \), \(K_p = 10,455,500 \), \(K_t = 41,822,000 \), \(J_v = 41,822 \), and \(T = 0.1 \) s. Construct the Bode diagram of \(G(z) = C(z)/E(z) \) for \(z = e^{j\omega T} \) for \(\omega \) up to \(\omega_s/2 \). Determine the gain and phase margins of the system.

![Diagram](image)

Work in the \(\mathbb{z} \)-plane.

10-12 The controlled process of a discrete-data control system is described by the transfer function

\[
G_{ao} G_p(z) = \frac{K(z + 0.5)}{(z - 1)(z - 0.5)}
\]

The sampling period is 0.1 s. Determine the value of \(K \), and design a cascade phase-lag digital controller with the transfer function

\[
D(z) = K_c \frac{z - z_1}{z - p_1}
\]

where \(D(1) = 1 \), so that the following design specifications are satisfied.

a. The ramp-error constant \(K_c = 100 \).

b. The phase margin is 60 degrees.

Plot the Bode diagrams of the open-loop transfer functions of the uncompensated and the compensated systems. Find the phase margin, gain margin, \(M_p \), and BW of the compensated system. Plot the unit-step response of the compensated system.

Work in the \(\mathbb{z} \)-plane.