ECE 304: Two-Mesh Design Project

Problem ${ }^{1}$

In the circuit of Figure 1, a sensing device provides a current $\mathrm{I}_{1}=10 \mathrm{~mA}$ and a receiving device demands a current of $\mathrm{I}_{2}=5 \mathrm{~mA}$. The matching T-section of resistors is subject to the conditions that it keeps the input voltage V_{1} in the range $-20 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$ and the output voltage V_{2} in the same range. Find values for the resistors R_{1}, R_{2} and R_{3}.

Figure 1
Schematic for the problem

Procedure

Our procedure is to analyze the circuit to find the constraints on the resistors imposed by the current limitations and node voltage requirements. We will find formulas expressing the range of resistance values that meet these conditions. Then we will plot these constraints using a spreadsheet. Then we will verify the spreadsheet using PSPICE.

Analysis

Using Kirchhoff's laws we find
EQ. 1

$$
V_{1}=I_{1}\left(R_{1}+R_{2}\right)-I_{2} R_{2}
$$

EQ. 2

$$
V_{2}=I_{1} R_{2}-I_{2}\left(R_{2}+R_{3}\right)
$$

Approach to the design problem

We introduce an extra variable into the problem, namely, the voltage on the middle node (top of the center resistor). Let's call this voltage $\mathrm{V}_{\mathrm{M}}(\mathrm{M}=$ middle node). The reason for introducing this variable is an anticipation that its behavior will be easy to understand and make solutions to the design problem easy to understand. We will see later whether this idea works. From Ohm's law we find
EQ. 3

$$
V_{M}=\left(I_{1}-I_{2}\right) R_{2}
$$

Using V_{M}, we can rewrite EQ. 1 and EQ. 2 as follows:
EQ. 4

$$
V_{1}=V_{M}+I_{1} R_{1}
$$

EQ. 5

$$
V_{2}=V_{M}-I_{2} R_{3}
$$

[^0]Next we solve for the resistor values using EQ. 3, EQ. 4 and EQ. 5. From EQ. 4, R_{1} is found as EQ. 6 below.
EQ. 6

$$
R_{1}=\frac{V_{1}-V_{M}}{I_{1}}
$$

From EQ. $5, R_{3}$ is found as
EQ. 7

$$
\mathrm{R}_{3}=\frac{\mathrm{V}_{\mathrm{M}}-\mathrm{V}_{2}}{\mathrm{I}_{2}},
$$

and rearranging EQ. $3, R_{2}$ is found as
EQ. 8

$$
\mathrm{R}_{2}=\frac{\mathrm{V}_{\mathrm{M}}}{\mathrm{I}_{1}-\mathrm{I}_{2}}
$$

Putting in the values given for $\mathrm{I}_{1}=10 \mathrm{~mA}$ and $\mathrm{I}_{2}=5 \mathrm{~mA}$, we find
EQ. 9

$$
\mathrm{R}_{1}=\frac{\mathrm{V}_{1}-\mathrm{V}_{\mathrm{M}}}{10} \mathrm{k} \Omega
$$

EQ. 10

$$
\mathrm{R}_{2}=\frac{\mathrm{V}_{\mathrm{M}}}{5} \mathrm{k} \Omega
$$

EQ. 11

$$
\mathrm{R}_{3}=\frac{\mathrm{V}_{\mathrm{M}}-\mathrm{V}_{2}}{5} \mathrm{k} \Omega .
$$

Intuitive behavior of equations

The expected advantage of V_{M} as a variable is that we know intuitively how it should behave. For example, because I_{1} flows from V_{1} to $V_{M}, V_{M} \leq V_{1}$. Likewise, because I_{2} flows from V_{M} to V_{2}, we know $V_{M} \geq V_{2}$. Or, putting these two facts together, we know intuitively that V_{M} lies between V_{1} and V_{2}, that is,
EQ. 12

$$
\mathrm{V}_{1} \geq \mathrm{V}_{\mathrm{M}} \geq \mathrm{V}_{2} .
$$

Using our understanding of V_{M} it is easy to understand EQ. 9: $R_{1} \rightarrow 0$ as $V_{M} \rightarrow V_{1}$ because the current in R_{1} is fixed at $I_{1}=10 \mathrm{~mA}$. As $V_{M} \rightarrow V_{1}$, the voltage drop across R_{1} is reduced, so R_{1} has to be smaller to allow the same current to flow. A similar understanding applies to EQ. 11.

Bounds on resistor values due to voltage limits

Looking at EQ. 9 assuming V_{M} is given, the value of R_{1} increases linearly as V_{1} increases, which means the maximum value of R_{1} occurs when V_{1} is its maximum value of $V_{1}=20 \mathrm{~V}$. The reason R_{1} is a maximum when $V_{1}=20 \mathrm{~V}$ is that $V_{1}=20 \mathrm{~V}$ will place the largest voltage drop across R_{1}, so to keep the current at $I_{1}=10 \mathrm{~mA}, \mathrm{R}_{1}$ will be its biggest. In other words, the maximum value $\mathrm{R}_{1 \text { mAX }}$ is given by
EQ. 13

$$
\mathrm{R}_{1 \mathrm{MAX}}=\frac{20-\mathrm{V}_{\mathrm{M}}}{10} \mathrm{k} \Omega .
$$

The minimum value of R_{1} is zero and occurs when $V_{1}=V_{M}$. According to EQ. 10, for a non-negative value of R_{2} we must have EQ. 14

$$
V_{M} \geq 0
$$

From EQ. 11 for a given value of V_{M}, the value of R_{3} decreases linearly as V_{2} increases, reaching zero when $\mathrm{V}_{2}=\mathrm{V}_{\mathrm{M}}$. Again, the reason is that when V_{M} is fixed and V_{2} is increased, the
voltage drop across R_{2} is decreased. Therefore, R_{2} must be reduced to keep the current at $I_{2}=5$ mA . Correspondingly, the minimum value of R_{3} occurs when V_{2} has its greatest value of $V_{2}=$ 20 V , so $\mathrm{R}_{\text {3MIN }}$ is given by
EQ. 15

$$
\mathrm{R}_{3 \mathrm{MIN}}=\frac{\mathrm{V}_{\mathrm{M}}-20}{5} \mathrm{k} \Omega,
$$

so long as this value is not negative. We can see that EQ. 15 will not affect the design because the largest value of V_{M} allowed is $\mathrm{V}_{\mathrm{M}}=20 \mathrm{~V}$. Therefore, for all allowed values of V_{M}, EQ .15 is negative or zero, which places no constraint on R_{3} because R_{3} is always $\geq 0 \Omega$ anyway.

Finally, looking at EQ. 11 the other way around, for decreasing V_{2}, the value of R_{3} increases linearly as V_{2} decreases, so the largest value of R_{3} occurs when V_{2} is its most negative value $V_{2}=-20 \mathrm{~V}$ and $\mathrm{R}_{\text {3MAX }}$ is
EQ. 16

$$
\mathrm{R}_{3 \mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{M}}+20}{5} \mathrm{k} \Omega
$$

The bounds on $R_{1=}$ and R_{3} are now put into a spreadsheet, and the value of R_{2} is calculated from V_{M} using EQ. 10.

Spreadsheet

The spreadsheet contains several worksheets. The Organization worksheet shows the arrangement.

Worksheet Organization

Figure 2
Organization of the spreadsheet as seen on the Organization worksheet
Figure 2 introduces the spreadsheet organization. Data input is made on ChARTS, formulas are defined on DESIGN, and functional dependence is calculated on Vm_VARIES. In more complex spreadsheets there will be several worksheets for calculations and it is best to keep all data input in one place, namely CHARTS, to insure that all the worksheets are working with the same design point. CHARTS also has graphs showing the design tradeoffs. These graphs, or charts,
automatically update when the data input on CHARTS is changed, allowing immediate visual appraisal of the benefit of the change.

The worksheets shown in the row under CHARTS are supplementary, serving to remind the user how the spreadsheet works, what problem it has solved, what the notation means, and what PSPICE verifications have been done to insure everything is working. The worksheets are separately introduced next.
Worksheet Charts

Figure 3
Worksheet Charts showing UsER InPUT field for data and design point values from DESIGN; the maximum voltage has been labeled as $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$
Figure 3 shows the CHARTS worksheet where data is input and charts of the resistor values are plotted. To avoid accidental overwriting of the FROM DESIGN area, this area of the worksheet is protected. Instructions to unprotect it are provided in case we forget how later on.

Worksheet Design

Figure 4
Design worksheet that contains formulas for the values of the bounds and of R_2

The DESIGN worksheet contains the formulas used in the design. It is useful to have all the formulas in one place. Then the other worksheets are made by copying these formulas, so all use the same formulas. If a formula is changed, it is changed here, and then copied to the other worksheets.

Worksheet Vm_Varies

	1_MAX	$-$	IF	_M	A, (V	C-V_M)*	0/10)
	D	E	F	G	H	1	J
5	V_M Varies				EQ 10	EQ 13	EQ 16
6				V_M	R_2	R 1 MA	R_3_MAX
7				0	0	2000	4000
8				1	200	1900	4200
9				2	400	1800	4400
10				3	600	1700	4600
11				4	800	1600	4800
12				5	1000	1500	5000
13				6	1200	1400	5200
14				7	1400	1300	5400

Figure 5

Worksheet Vm_VARIEs showing the formula used to calculate $\mathrm{R}_{1 \text { max }}$
Figure 5 shows the worksheet Vm_Varies. This worksheet is easily formed using the DEsign worksheet: we simply highlight the cells F15:G18 in Figure 4, copy them, and go to a blank worksheet where we use Edit/Paste Special with the Transpose box checked. That pastes the columns as rows on the new worksheet. The implementation of EQ. 13 using an IF-statement as shown in Figure 5 and Figure 4 serves to check for negative values of R_{1}, and inserts \#N/A (not available) if a negative value would result. Negative values should not happen if we keep $\mathrm{V}_{\mathrm{M}} \leq 20 \mathrm{~V}$, a requirement of EQ .12 already discussed.

Worksheet V_{M} VARIES does all the graphical calculations. V_{M} is a column variable, and for each value in the V_{M} column the resistor value R_{2} is found, and the limiting values on R_{1} and R_{3}.

Worksheet Schematic

Figure 6
The Schematic worksheet
Figure 6 shows the SChematic worksheet, which is useful to remind you what the variables in the spreadsheet mean.

Worksheet PSpice Check

Figure 7
Worksheet PSPICE CHECK showing a particular spot check of a design point where V_{1} and V_{2} are at their limiting values
Figure 7 shows the worksheet PSPICE Check where spot checks of the spreadsheet using PSPICE are pasted. The value of this sheet is to remind the user just what has been checked, so a new user knows whether their application of the spreadsheet is new territory or just routine. Of course, a verbal listing of checks performed might be useful too.

Verification of the spreadsheet

A spot check of the spreadsheet is accomplished by selecting a value of V_{M} and putting the spreadsheet values for R_{1}, R_{2} and R_{3} into PSPICE. An example is shown in the worksheet of Figure 8 below and its PSPICE verification in Figure 9.

Figure 8

A random example in which R_{1} lies below its upper bound ($R _1 _M A X$) and R_{3} lies below its upper bound (R _3_MAX); R_{2} is calculated, and lies on the calculated curve $R _2$

Figure 9
PSPICE verification of spreadsheet results in Figure 8

Verification of design boundaries

A useful test of the spreadsheet (and also the analysis behind the spreadsheet) is to check points on the boundary. On the boundary V_{1} or V_{2} or both should be at their limiting values because their limits are what set the boundaries in the first place. An example of a design point on the boundary is shown in Figure 10 below.

Figure 10

An example design point where R_{1} and R_{3} both are at their limiting boundaries, and the spreadsheet predicts $\mathrm{V}_{1}=20 \mathrm{~V}$ and $\mathrm{V}_{2}=-20 \mathrm{~V}$, which are limiting values for the voltages

Figure 11
PSPICE verification of the design point of Figure 10

Figure 11 shows that PSPICE agrees with the spreadsheet predictions for V_{1} and V_{2}. Of course, PSPICE input was R_{2}, not V_{M}, so another check is that V_{M} from PSPICE is the value $V_{M}=13 \mathrm{~V}$ used in the spreadsheet.

Bells and whistles

EXCEL allows us to implement bells and whistles. These conveniences make sense only if the spreadsheet is used a lot, and they aren't worthwhile for a single design. Here's an example, which introduces features more valuable in complex designs.

The spreadsheet has a check feature to warn the user whether the design is in spec. This warning is in cell F8 on CHARTS, and is implemented using an IF-statement as shown below:
=IF(OR(ABS(V_1)>20,ABS(V_2)>20),"OUT OF SPEC","IN SPEC")

The IF statement evaluates the OR condition to see whether the voltages are out of spec. If they are, it prints the value OUt of Spec. Otherwise it prints the value In Spec. To emphasize the violation of specifications, CONDITIONAL FORMATTING is used to change the font color depending on whether the design is in or out of specification. Conditional Formatting is implemented by highlighting the cell F8 and selecting the menu Format/Conditional Formatting. The menu is filled out as shown in Figure 12.

Figure 12
Conditional formatting menu for making the font red for a violation of specification, and blue for within specification; this is how the menu is filled out: once OK is clicked, Excel will implement the entries as text strings with quotation marks
To add to the warning, a label is added to the chart when a violation occurs. An example is shown in Figure 13 below.

Figure 13
Warning labels when design is out of specification; $\mathrm{V} _1=63 \mathrm{~V}$, which exceeds the 20 V specification; the label at lower left of the chart is the content of cell M29
Highlighting the chart and hitting the equals sign adds the chart label. This procedure introduces a text box inside the chart, and right after hitting the equals sign, you can make the text box contain whatever you enter in the formula box, for example the content of cell F8.

Discussion

In looking at this problem one sees right away that there are many possible solutions. This latitude allows opportunity to satisfy other conditions that haven't been specified yet, for example, cost requirements or further performance goals.

Besides a variety of design solutions, there are a variety of solution approaches. The approach above uses an extraneous variable V_{M}. We call such a variable a design variable, to distinguish it from a circuit component value, or circuit variable. This variable is not necessary: one could work directly with the resistor values. In particular, one could use R_{2} as a running variable instead of V_{M} and do the entire design using R_{2}. According to EQ. 10 these two variables are entirely equivalent mathematically.

The reason for introducing V_{M} is transparency. We hope that using V_{M} makes the design more understandable, which will help us think about the design choices, be more creative, and avoid errors. We have seen that easy interpretation of V_{M} makes it clear why the boundary on R_{3} increases with V_{M} : bigger $V_{M} \rightarrow$ bigger voltage drop across R_{3}, which requires a larger R_{3} to keep $I_{2}=10 \mathrm{~mA}$. Likewise, we know why the bound on R_{1} drops with increased V_{M} : larger $\mathrm{V}_{\mathrm{M}} \rightarrow$ smaller drop across R_{1}, which requires a smaller R_{1} to keep $I_{1}=5 \mathrm{~mA}$. And we also understand why R_{2} increases with V_{M} : larger $V_{M} \rightarrow$ bigger drop across R_{2}, which means R_{2} must increase to keep its current $\left(I_{1}-I_{2}\right)$ at 5 mA .

It is helpful to check the design curves of the spreadsheet this way to see that they do make sense and no gross error has crept into our analysis. This understanding also shows the necessity of why things behave as they do, for example, why R_{3} and R_{2} must go upward when R_{1} goes downward.

If a formulation seems perplexing or opaque, not intuitive, rethinking the choice of variables can lead to transparency. The best variables are not always the values of circuit components, but variables that convey our concept of how the circuit works. That is, design variables that guide our thought may be related only indirectly to the circuit variables that specify what circuit to build.

Design variables are inventions related to concept. There is no cut-and-dried approach to concept, but the spreadsheet can help. Spreadsheet organization is tied to concept. For example, spreadsheet layout depends on what variables are selected, and which are elected independent, which dependent. Also, the spreadsheet displays trade-off curves. Explaining these curves forces us to think, learn more, and perhaps change our approach. The spreadsheet is a partner in our thinking, and the design can take new turns as our minds and our spreadsheet evolves.

Summary of solution to design problem

Finally, we summarize the solution to the design problem:
The specifications that $I_{1}=10 \mathrm{~mA}$ and $\mathrm{I}_{2}=5 \mathrm{~mA}$ for input and output voltages less than 20 V in magnitude are satisfied for values of R_{1} and R_{3}, that satisfy inequalities EQ. 13 for R_{1} and $E Q$. 16 for R_{3} at the selected value of V_{M}. That is, there is a range of allowed values for R_{1} found below the lowest downward sloping curve in Figure 10, and for R_{3} found below the highest upward sloping curve in Figure 10. For a solution, R_{2} must satisfy EQ. 10, also shown in Figure 10. For any selected R_{1}, R_{2} and R_{3}, the voltages are reported in the CaLCULATED box, as determined by EQ. 1 and EQ. 2.

Exercises

Below are other spreadsheets related to this problem. You'll see spreadsheets affect your thinking and vice versa. In these problems, the "presented" spreadsheet means the spreadsheet just discussed.

1. Redesign the presented spreadsheet so it uses R_{2} as a variable and R2_Varies as calculation worksheet, and does not use the variable V_{M} or worksheet VM_{M} VARIES at all. CHARTS should show a chart for the allowed values for R_{1} and R_{3} similar to the presented spreadsheet, but using R_{2} as x-axis.
2. Redesign the presented spreadsheet so it uses R_{1} and R_{3} as variables and R1_VARIES and R3_VARIES as calculation worksheets, and does not use the variable V_{M} or worksheet Vm_VARIES at all. ChARTS should show a chart for the allowed values for R_{2} for any choice of R_{1} and R_{3}.
3. Redesign the presented spreadsheet to guide selection of R_{1}, R_{2} and R_{3} to meet a specification for the power consumed by the resistors. The voltages V_{1} and V_{2} and the values of I_{1} and I_{2} still must satisfy the original problem requirements.
4. Redesign the presented spreadsheet so it will solve the design problem for any positive values for I_{1} and I_{2} input on CHARTS, regardless of which of I_{1} and I_{2} is larger. Assume the currents are in the range from 0 to 10 mA .
5. Redesign the presented spreadsheet so it will solve the design problem for any values for I_{1} and I_{2} input on CHARTS, positive or negative. Assume the currents are in the range from -10 mA to 10 mA .
6. Redesign the presented spreadsheet so it will explore the design problem as a function of positive values for I_{1} and I_{2}, regardless of which of I_{1} and I_{2} is larger. The new spreadsheet will contain additional worksheets I1_VARIES and I2_VARIES, and place charts on ChARTS to show how R_{1}, R_{2}, and R_{3} behave as these currents are changed. Assume the currents are in the range from 0 to 10 mA .

[^0]: ${ }^{1}$ This example is based on a suggestion by Larry Huelsman

