ECE 304 Spring ' 05 First Exam Solutions

Problem 1: Current mirror

Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answer without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

Figure 1
Current mirror for Problem 1

Figure 2
Current vs. DC voltage for current mirror of Figure 1
Select values for R_{R} and R_{E} so the mirror will have the $I-V$ behavior seen in Figure 2. Assume the maximum forward $C B$ bias in saturation is $\mathrm{V}_{\mathrm{CB}}=-\mathrm{V}_{\mathrm{SAT}}=-500 \mathrm{mV}$. Note that all transistors have infinite Early voltages.

ANSWER: $R_{R}=1 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{E}}=998 \Omega$
Outline:
The break in slope of the mirror occurs when transistor Q1 first saturates, which means when $\mathrm{V}_{\mathrm{CB}}(\mathrm{Q} 1)=-500 \mathrm{mV}$. From Figure 2, this occurs when $\mathrm{V}_{\mathrm{S}}=-7.83 \mathrm{~V}$. At this value of $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{C}}(\mathrm{Q} 1)$, the base voltage of Q 1 is at $\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CB}}=-7.83-(-.5)=-7.33 \mathrm{~V}$. The current from Figure 2 is 6.649 mA (the transistor will become fully active 500 mV above the corner, increasing the current from 6.643 mA at the corner to the fully active value 6.649 mA above the corner). By Ohm's law applied to R_{R},
EQ. 1

$$
\mathrm{R}_{\mathrm{R}}=\frac{7.33}{6.649 \mathrm{~mA}(1+2 / 20)}=1.002 \mathrm{k} \Omega .
$$

Using the given current we find V_{BE} as $\mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{TH}} \ell \mathrm{n}(6.649 \mathrm{~mA} / 10 \mathrm{fA})=704.1 \mathrm{mV}$. From Ohm's law with R_{E} we find $E Q$. 2 below.
EQ. 2

$$
\mathrm{R}_{\mathrm{E}}=\frac{-7.33+15-0.704}{6.649 \mathrm{~mA}(1+1 / 20)}=998 \Omega
$$

Problem 2: CE amp with current mirror bias

Figure 3

CE amplifier with current mirror bias; C_{C} is a bypass capacitor
All resistors have a value of $1 \mathrm{k} \Omega$. Transistors are ideal (see dot-model statement), with infinite Early voltage. Determine the following:

1. The DC output voltage V_{O}. Find V_{BE} in the mirror by iteration.

ANSWER: $\mathrm{V}_{\text {OUT }}=8.028 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{BE}}=705.6 \mathrm{mV}$.
Outline:
First, we find the mirror current $I_{C}(Q 3)$; then the collector current of Q1, $I_{C}(Q 1)$. Then $V_{\text {OUT }}=$ $\mathrm{V}_{\mathrm{CC}}-\mathrm{l}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}$.

- Mirror current. By Ohm's law applied to R_{R}, labeling $I_{C}(Q 3)=I_{C}$,

EQ. 3

$$
V_{B}=-I_{C}(1+2 / \beta) R_{R} .
$$

By Kirchhoff's voltage law along the right side of the mirror

EQ. 4

$$
V_{B}=I_{C}(1+1 / \beta) R_{E}-V_{C C}+V_{B E} .
$$

Combining EQ. 3 and EQ. 4, we find I_{C} is given by EQ. 5 below.
EQ. 5

$$
I_{C}=\frac{V_{C C}-V_{B E}}{(1+2 / \beta) R_{R}+(1+1 / \beta) R_{E}} .
$$

However, V_{BE} also is determined from I_{C} as EQ .6 below. EQ. 6

$$
V_{B E}=V_{T H} \ln \left(I_{C} / I_{S}\right) .
$$

Therefore, we guess $V_{B E}=700 \mathrm{mV}$ and find I_{C} from $E Q$. 5 . Then we use this value of I_{C} in $E Q .6$ to find a new value for $V_{B E}$. We place this new $V_{B E}$-value in $E Q .5$ to find a new value for I_{C}, and so on. After a few iterations, the result is $\mathrm{V}_{\mathrm{BE}}=705.6 \mathrm{mV}$ and $\mathrm{I}_{\mathrm{C}}(\mathrm{Q} 3)=7.042 \mathrm{~mA}$.

- Collector current of Q1: $\mathrm{I}_{\mathrm{C}}(\mathrm{Q} 1)=\mathrm{I}_{\mathrm{C}}(\mathrm{Q} 3) /(1+1 / \beta)=6.972 \mathrm{~mA}$.
- Value of $V_{\text {OUt }}$: Now $V_{\text {OUT }}=V_{C C}-I_{C}(Q 1) R_{C}=15-6.972 \mathrm{~mA} \times 1 \mathrm{k} \Omega=8.028 \mathrm{~V}$

2. The small signal voltage gain (formula and numerical value).

ANSWER: The small-signal voltage gain is $A_{v}=-I_{C} R_{C} / V_{T H}=-269.6 \mathrm{~V} / \mathrm{V}$.
OUTLINE: The signal voltage V_{S} is applied directly across r_{π} so the small-signal collector current is $g_{m} V_{s}$. See Figure 4.

Figure 4
Small-signal equivalent circuit for amplifier of Figure 3 with infinite $V_{\text {AF }}$ (i.e., $r_{0}=\infty$)
This current is directed upward through R_{C}, so the output voltage is $V_{O}=-g_{m} R_{C} V_{S}$. Thus the voltage gain is $\left(g_{m} \approx \mathrm{I}_{\mathrm{C}} / \mathrm{V}_{\mathrm{TH}}\right)$
EQ. 7

$$
\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{S}}}=-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{C}} \approx-\frac{\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{TH}}}=-\frac{6.972}{25.864 \mathrm{~m}}=-269.6 \mathrm{~V} / \mathrm{V}
$$

The same result can be found using a CCCS and the relation $r_{\pi} \approx \beta_{A C} V_{T H} / I_{C}$.
3. Sketch the output voltage vs. time for the case of a sinusoidal input voltage with the maximum amplitude V_S that leaves the transistor Q1 in active mode throughout the cycle.
That is, the input voltage is

$$
v(t)=V _S \sin (2 \pi t / T)
$$

Discuss reasons to expect distortion, even if the transistor stays active.
ANSWER: Distortion is expected because the transistor $I-V$ relation is the diode law, that is, the current is proportional to $\exp \left(\mathrm{V}_{\mathrm{S}} / \mathrm{V}_{\mathrm{TH}}\right)$ when $v(\mathrm{t})=\mathrm{V}_{\mathrm{S}}$, and the current is proportional to $\exp \left(-V_{S} / V_{T H}\right)$ when $v(t)=-V_{S}\left(V_{S}=\right.$ amplitude of voltage $)$. Unless $V_{S} \ll V_{T H}$, the current swing for $v(t)=V_{S}$ is much larger than for $v(t)=-V_{S}$, and therefore the AC output downswing is much greater than the AC output upswing. A rough sketch of the output is then shown below.

The device remains active so long as $0 \leq v_{\text {OUT }}(t) \leq V_{C C}$, the upper limit set by cut off and the lower limit by saturation.
4. Determine the numerical value for the maximum input amplitude V_S that avoids clipping, assuming the above input signal, and the corresponding maximum output upswing and downswing voltage.
ANSWER: Maximum input amplitude is $\mathrm{V}_{\mathrm{S}}=0.8165 \mathrm{~V}_{\mathrm{TH}}=21.118 \mathrm{mV}$. Maximum output upswing is 3.891 V and maximum output downswing is 8.028 V .

Outline:
When the signal swing is V_{S}, the collector current increases by $\Delta \mathrm{t}$ as given by EQ. 8 below.
EQ. 8

$$
\Delta t=I_{S} e^{\left(\frac{V_{B E}+V_{S}}{V_{T H}}\right)}-I_{S} e^{\left(\frac{V_{B E}}{V_{T H}}\right)}=I_{C Q}\left(e^{\left(\frac{V_{S}}{V_{T H}}\right)}-1\right),
$$

where $I_{C Q}=Q$-point collector current.
The increase in current in turn causes an increased voltage drop across R_{C} of $\Delta t R_{C}$, which will cause Q1 to saturate if $\mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}$; that is, saturation occurs if
EQ. 9

$$
\Delta \mathrm{R}_{\mathrm{C}}=\mathrm{I}_{\mathrm{CQ}}\left(\mathrm{e}^{\left(\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{~V}_{\mathrm{TH}}}\right)}-1\right) \mathrm{R}_{\mathrm{C}}=8.8028 \mathrm{~V} .
$$

Solving for V_{S} we find $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\text {TH }} \ell \mathrm{n}(8.8028 / 6.972+1)=21.118 \mathrm{mV}$.
The same value of V_{S} applies on the upswing, as the amplitude V_{S} is fixed. Therefore, on the upswing the change in current is
EQ. 10

$$
\Delta l=I_{S} e^{\left(\frac{V_{B E}-V_{S}}{V_{T H}}\right)}-I_{S} e^{\left(\frac{V_{B E}}{V_{T H}}\right)}=I_{C Q}\left(e^{-\left(\frac{V_{S}}{V_{T H}}\right)}-1\right) .
$$

The exponential is less than 1 , so the change in current is negative, and the total current $\mathrm{ic}_{\mathrm{c}}(\mathrm{t})=$ $I_{C Q}+\Delta \mathrm{l}$ goes down, reducing the voltage drop across R_{C} and causing the output voltage to swing up by an amount $-\Delta_{\mathrm{t}} \mathrm{R}_{\mathrm{C}}$. Substituting the established value of $\mathrm{V}_{\mathrm{S}}=21.118 \mathrm{mV}$, we find the upswing is
EQ. 11

$$
-\Delta R_{C}=I_{C Q}\left(1-e^{-\left(\frac{V_{S}}{V_{T H}}\right.}\right) \mathrm{R}_{\mathrm{C}}=3.891 \mathrm{~V} .
$$

This swing takes vout to 12.7 V , too low to cause cutoff. Therefore, saturation limits V_{s}.
Problem 3: Active load

.model Qp PNP (Bf=\{B_F\} Is=\{I_S\} Vaf=\{V_AF\}) .model Qn NPN (Bf=\{B_F\} Is=\{I_S\} Vaf=\{V_AF\}) PARAMETERS:
I S $=10 \mathrm{fA}$
B_F = 100
V_AF $=100 \mathrm{~V}$
PARAMETERS:
I_B1 $=100 \mathrm{uA}$
$1 _B 2=95 u A$

Figure 5
CE amplifier with active load; the transistors are matched and have Early voltages of $\mathrm{V}_{\mathrm{AF}}=$ $100 \mathrm{~V} ; \mathrm{I} _\mathrm{B} 1$ is fixed at $100 \mu \mathrm{~A}$ and I B2 is varied in this problem

Figure 6
Provided plot of output voltage as a function of I_B2 when I_B1 = $100 \mu \mathrm{~A}$

1. Explain using formulas why the output voltage of the amplifier increases approximately linearly with the base current $\mathrm{I}_{\mathrm{B} 2}$ biasing the load, as shown in Figure 6.
Answer:
EQ. 12

$$
\mathrm{V}_{\mathrm{OUT}}=\frac{\left(\mathrm{I}_{\mathrm{B} 2} / I_{\mathrm{B} 1}\right)\left(\mathrm{V}_{\mathrm{AF}}+\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EB}}\right)-\mathrm{V}_{\mathrm{AF}}-\mathrm{V}_{\mathrm{CC}}+\mathrm{V}_{\mathrm{BE}}}{1+\left(\mathrm{I}_{\mathrm{B} 2} / I_{\mathrm{B} 1}\right)} .
$$

Over the range of $\mathrm{I}_{\mathrm{B} 2}$ shown in Figure 6, the ratio $\mathrm{I}_{\mathrm{B} 2} / I_{\mathrm{B} 1}$ in this equation changes only slightly from unity. In the numerator this change is important because the negative terms very nearly cancel the positive terms (they cancel exactly when $I_{\mathrm{B} 2} / I_{\mathrm{B} 1}=1$ according to Figure 6), so the linear $\mathrm{I}_{\mathrm{B} 2} / I_{\mathrm{B} 1}$ dependence of the numerator is significant. However in the denominator the sum is nearly 2 over the range of the plot, so the $\mathrm{I}_{\mathrm{B} 2} / \mathrm{I}_{\mathrm{B} 1}$ dependence in the denominator is almost negligible. With $\mathrm{V}_{\mathrm{BE}} \approx$ $V_{E B} \approx 700 \mathrm{mV}$, EQ. 12 agrees with the labeled points in the provided Figure 6.
Outline
The value of $\mathrm{V}_{\text {OUT }}$ is set by the condition that the collector current from Q2 be equal to the collector current going to Q1. This condition is
EQ. 13

$$
\mathrm{I}_{\mathrm{C} 1}=\beta_{0}\left(1+\frac{\mathrm{V}_{\mathrm{O}}+\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{AF}}}\right) \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{C} 2}=\beta_{0}\left(1+\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EB}}-\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{AF}}}\right) \mathrm{I}_{\mathrm{B} 2},
$$

where we have used the $V_{C B}$ dependence of $\beta=\beta_{0}\left(1+V_{C B} / V_{A F}\right)$ and the relation $I_{C}=\beta I_{B}$. Solving for V_{O} (representing the output voltage), we obtain the stated result.
2. Determine a formula for the slope $\partial \mathrm{V}_{\mathrm{OUT}} / \partial \mathrm{I}_{\mathrm{B} 2}$ when $\mathrm{I}_{\mathrm{B} 1}$ is held fixed.

ANSWER: By differentiation, the slope is given by

$$
\frac{\partial \mathrm{V}_{\mathrm{O}}}{\partial \mathrm{I}_{\mathrm{B} 2}}=-\frac{\mathrm{V}_{\mathrm{O}}-\left(\mathrm{V}_{\mathrm{AF}}+\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EB}}\right)}{\mathrm{I}_{\mathrm{B} 1}+\mathrm{I}_{\mathrm{B} 2}} ;
$$

3. Evaluate your slope formula and compare it with Figure 7; the slope does decrease somewhat with increasing $\mathrm{I}_{\mathrm{B} 2}$.
ANSWER: Using $\mathrm{V}_{\mathrm{BE}} \approx \mathrm{V}_{\mathrm{EB}} \approx 700 \mathrm{mV}$, the formula agrees almost exactly with the labeled points in the provided Figure 7.

Figure 7
Provided plot of slope of Figure 6 in $\mathrm{V} / \mu \mathrm{A}$; $\mathrm{I}_{\mathrm{B} 1}$ is fixed at $\mathrm{I}_{\mathrm{B} 1}=100 \mu \mathrm{~A}$

