ECE 304 Final Exam Spring `04
 11 AM - 1PM Closed Book

Note: In all cases

1. Put your answer first, and
2. Follow up with an outline of your solution. Each major step in the outline should 2.1. Begin with a heading that describes the objective of that step, and should
2.2. Have a body where actual work is done, not just hand waving, and should
2.3. Conclude with a quantitative statement of the major result for that step (a number or formula or both).

For all problems take the thermal voltage as $\mathrm{V}_{\mathrm{TH}}=25.864 \mathrm{mV}$.

Problem 1

Figure 1
Three-pole amplifier in a feedback circuit

For the circuit of Figure 1 select a new value of C_{1} so the amplifier operates with a phase margin of 45° when the feedback $\beta_{\mathrm{FB}}=1.25 \times 10^{-8} \mathrm{~A} / \mathrm{V}$. All resistors are $1 \mathrm{k} \Omega$, and the gains of VCVS E1, $\mathrm{E} 2, \mathrm{E} 3$ are $-10^{3} \mathrm{~V} / \mathrm{V}$. The last VCVS E4 has unity gain. The feedback VCCS has a gain $\beta_{\mathrm{FB}}=$ $1.25 \times 10^{-8} \mathrm{~A} / \mathrm{V}$. Capacitor $\mathrm{C}_{2}=1 \mathrm{nF}, \mathrm{C}_{3}=100 \mathrm{pF}$.

For the given values of R and C the pole frequencies are $f_{1}=159.15 \mathrm{~Hz}, f_{2}=159.15 \mathrm{kHz}$, and $f_{3}=$ 1.5915 MHz .

Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answer without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

Problem 2

Figure 2
Feedback amplifier; gain of main stage from part E2 is $1000 \mathrm{~V} / \mathrm{V}$
In Figure 2 all resistors are $1 \mathrm{k} \Omega$ and the main amplifier has a gain of $1 \mathrm{kV} / \mathrm{V}$.

1. Determine the gain of the amplifier with feedback and its units.
2. State which resistors could be eliminated from the feedback T-section and say why.

Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answer without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

Problem 3

Figure 3
Voltage follower stage
For the circuit of Figure 3, determine the DC value of $\mathrm{V}_{\text {Out }}$ for a DC input voltage of $\mathrm{V}_{\text {IN }}=-15 \mathrm{~V}$.
Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answer without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

Problem 4

Figure 4
Power output amplifier
For the circuit of Figure 4, determine the $D C$ value of $\mathrm{V}_{\text {OUT }}$ when the $D C$ value of $\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$.
Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answer without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

Problem 5

Figure 5
Differential amplifier
For the amplifier of Figure 5 assume the maximum forward bias of the CB junction in saturation is $V_{C B}=-V_{S A T}=-600 \mathrm{mV}$. Also, assume in active mode $\mathrm{V}_{\mathrm{BE}}=700 \mathrm{mV}$. Make a table like the one below and fill it in.

Do NOT use the table on this page.

		Mode	Mode			
VA	VB	QA	QB	VOUTA	VOUTB	VE
7	1					
2	1					
1	1					
0	1					

Provide an outline only for the case $\mathrm{V}_{\mathrm{A}}=2 \mathrm{~V}$. For this case, follow the outline procedure at the top of the exam with headings for each major step in the solution. A mish-mash of calculations is not an acceptable outline.

Problem 6

Figure 6

Transresistance amplifier
In Figure 6 the transistor parasitic capacitances $\mathrm{Cpi} \equiv \mathrm{C}_{\pi}$ and $\mathrm{Cmu} \equiv \mathrm{C}_{\mu}$ are shown explicitly as if they were external capacitances with values $\mathrm{C}_{\pi}=50 \mathrm{pF}$ and $\mathrm{C}_{\mu}=2 \mathrm{pF}$. Determine the upper 3dB corner frequency of the small-signal transresistance gain $\mathrm{V}_{\text {out }} / \mathrm{l}_{\mathrm{ac}}$.

Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answers without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

