ECE 304 Final Exam Spring `04 11 AM – 1PM Closed Book

NOTE: In all cases

- 1. Put your answer first, and
- 2. Follow up with an <u>outline</u> of your solution. Each major step in the outline should
 - 2.1. <u>Begin with a heading that describes the objective</u> of that step, and should
 - 2.2. Have a body where actual work is done, not just hand waving, and should
 - 2.3. Conclude with a quantitative statement of the <u>major result</u> for that step (a number or formula or both).

For all problems take the thermal voltage as V_{TH} = 25.864 mV.

Problem 1

For the circuit of Figure 1 select a new value of C₁ so the amplifier operates with a phase margin of 45° when the feedback $\beta_{FB} = 1.25 \times 10^{-8}$ A/V. All resistors are 1 k Ω , and the gains of VCVS E1, E2, E3 are -10^3 V/V. The last VCVS E4 has unity gain. The feedback VCCS has a gain $\beta_{FB} = 1.25 \times 10^{-8}$ A/V. Capacitor C₂ = 1 nF, C₃ = 100 pF.

For the given values of R and C the pole frequencies are $f_1 = 159.15$ Hz, $f_2 = 159.15$ kHz, and $f_3 = 1.5915$ MHz.

FIGURE 2

Feedback amplifier; gain of main stage from part E2 is 1000V/V

In Figure 2 all resistors are 1 $k\Omega$ and the main amplifier has a gain of 1kV/V.

- 1. Determine the gain of the amplifier with feedback and its units.
- 2. State which resistors could be eliminated from the feedback T-section and say why.

FIGURE 3

Voltage follower stage

For the circuit of Figure 3, determine the DC value of V_{OUT} for a DC input voltage of $V_{IN} = -15V$.

FIGURE 4

Power output amplifier

For the circuit of Figure 4, determine the DC value of V_{OUT} when the DC value of V_{IN} = 15 V.

FIGURE 5

Differential amplifier

For the amplifier of Figure 5 assume the maximum forward bias of the CB junction in saturation is $V_{CB} = -V_{SAT} = -600 \text{ mV}$. Also, assume in active mode $V_{BE} = 700 \text{ mV}$. Make a table like the one below and fill it in.

Do **NOT** use the table on this page.

		Mode	Mode			
VA	VB	QA	QB	VOUTA	VOUTB	VE
7	1					
2	1					
1	1					
0	1					

Provide an outline only for the case $V_A = 2V$. For this case, follow the outline procedure at the top of the exam with headings for each major step in the solution. A mish-mash of calculations is not an acceptable outline.

FIGURE 6

Transresistance amplifier

In Figure 6 the transistor parasitic capacitances Cpi $\equiv C_{\pi}$ and Cmu $\equiv C_{\mu}$ are shown explicitly as if they were external capacitances with values $C_{\pi} = 50$ pF and $C_{\mu} = 2$ pF. Determine the upper 3dB corner frequency of the small-signal transresistance gain V_{out}/I_{ac} .