ECE 304: Final Exam Spring `03

Problem 1: Short questions for sketch and word answers (25 pts; ~25 min)

- 1. Define the classifications of power output amplifiers and describe their trade-offs.
- 2. Sketch a bipolar cascode circuit.
- 3. Sketch a pnp-differential amplifier with an npn-active load. Label the output node.
- 4. What are the advantages of an active load in a differential amplifier?
- 5. Sketch the current flow pattern in the V_{BE}-multiplier when the output voltage is at its lowest.
- 6. Describe the open-circuit time constant method and its relation to the midband circuit.
- 7. List the advantages of negative feedback.
- 8. List the disadvantages of negative feedback.
- 9. Sketch the DC common-mode transfer curve for a one-sided differential amplifier biased by a current mirror and identify the modes of the transistors in the mirror and in the differential amplifier in each region of the curve. Label the common-mode range.
- 10. Sketch the DC difference-mode transfer curve for a one-sided differential amplifier biased by a current mirror and identify the modes of the transistors in each region.

Problem 2: Differential amplifier frequency response (10 pts; ~ 10 min)

.model Qn NPN (IS=10fA Bf=100 Cje={Cpi} Cjc={Cu} TF=1ns)

FIGURE 1

One-sided differential amplifier

-		
NAME	Q_Q1	Q_Q2
MODEL	Qn	Qn
IB	9.90E-05	9.90E-05
IC	9.90E-03	9.90E-03
VBE	7.14E-01	7.14E-01
VBC	-1.50E+01	-5.10E+00
VCE	1.57E+01	5.81E+00
BETADC	1.00E+02	1.00E+02
GM	3.83E-01	3.83E-01
RPI	2.61E+02	2.61E+02
RX	0.00E+00	0.00E+00
RO	1.00E+12	1.00E+12
CBE	3.99E-10	3.99E-10
CBC	3.66E-12	5.08E-12
BETAAC	1.00E+02	1.00E+02

FIGURE 2

Q-point data for Figure 1; note that r_0 can be taken as ∞

For the amplifier in Figure 1 do the following,

1. Assuming $r_0 \approx \infty$, determine a formula for the complete frequency dependence (all poles and zeros) of the small-signal voltage gain V_{OUT}/V_S of the differential amplifier of Figure 1

Using the numerical values of Figure 1 and Figure 2

- 2. Sketch the dB gain plot
- 3. Sketch the Bode phase plot

Note: Label <u>numerical</u> values of all slopes and label the <u>numerical</u> coordinates of all break points.

Problem 3: Current mirror design (20 pts; ~ 10 min)

FIGURE 3

Current mirror; note that the emitter leg resistor on the left is 1/10 that on the right

Select R_E and R_R for the current mirror in Figure 3 to achieve a compliance voltage (relative to ground) of V_{DC} = zero volts at a DC current level of 10 μ A. Take V_{TH} = 25.85 mV and use the dot-model parameters to find V_{BE} for each transistor. Assume I_C \approx I_E and <u>zero tolerance</u> of forward bias in saturation. **Note:** The emitter leg resistors have different values.

Problem 4 (25 pts; ~ 25 min)

C ₁ = 1.592E-03 F	A ₀₁ =-1.00E+05 V/V	R ₁ =1 Ω
C ₂ = 1.592E-05 F	A ₀₂ =-1.00E+05 V/V	R ₂ =1 Ω
C ₃ = 1.592E-08 F		R ₃ =1Ω

FIGURE 5

Parameter values for two-stage amplifier

For the amplifier of Figure 4 with the parameters of Figure 5, for large values of C_a, the first pole shifts down and the second pole shifts up and locks at 10 MHz. Do the following

- 1. For a negative feedback amplifier with $1/\beta_{FB} = 10 \text{ dB}$, determine the position of the lowest pole corresponding to a phase margin of 45° assuming C_a large enough to lock the second pole at 10 MHz.
- 2. Determine the corresponding value of C_a.
- Sketch the Bode gain and phase plots for the open-loop amplifier with the new pole positions; label numerical values of all slopes and provide numerical values for the coordinates of all break points
- 4. On your gain plot show the curve for $1/\beta_{FB}$ and label the numerical value of the coordinates of its intersection with the open-loop amplifier gain curve.
- 5. On your phase plot label the numerical location of the frequency for 45° phase margin.

Problem 5: Differential amplifier design (20 pts; ~ 20 min)

FIGURE 6

Differential amplifier hooked up in difference mode; $\beta = B_F = 100$; $I_C = Q$ -point bias current By selecting values of R_R , R_E and R_C , arrange to meet the following specifications:

- 1. Amplifier allows common-mode input amplitudes from $-6V \le V_S \le 6V$
- 2. Amplifier small-signal difference mode gain V_{OUT}/V_d should be as large as possible
- 3. Q-point DC current level I_C should provide the best small-signal difference mode gain V_{OUT}/V_d possible
- 4. Amplifier small-signal common mode gain V_{OUT}/V_c should be as small as possible

The specifications are listed in priority; that is, in any trade-off, the higher priority is listed first. The DA transistors have infinite output resistance to simplify calculations. Assume <u>zero tolerance</u> for forward bias in saturation. Assume $I_C \approx I_E$, $V_{BE} = 0.7V$ and $V_{TH} = 25.85mV$. Arrange your work as follows:

- 1. Describe your reasoning for implementing these requirements in this order:
 - 1.1. How is the upper end of the common-mode range insured?
 - 1.2. How is the lower end of the common mode range insured?
 - 1.3. How is the highest DM gain insured?
 - 1.4. How is the lowest CM gain insured?
 - 1.5. How is the best value of Q-point collector current I_c of Q2 determined?
- 2. Show how to calculate the best value of Q-point collector current I_c of Q2.
- 3. Find the numerical value of the best DC bias current I_{c} .
- 4. <u>Tabulate</u> formulas and numerical values for your three resistors as shown in Figure 7.

	RR	RE	RC
Formula			
Numerical value			

FIGURE 7

Tabulation of resistor determination