ECE 304 Fall '04 Final Exam

NOTE: IN ALL CASES

- 1. Put your answer first, and
- 2. Follow up with an <u>outline of your solution</u>. Each major step in the outline should
 - 2.1. Begin with a heading that describes the objective of that step, and should
 - 2.2. Have a body where actual work is done, not just hand waving, and should
 - 2.3. Conclude with a quantitative statement of the <u>major result</u> for that step (a number or formula or both).

For all problems take the thermal voltage as V_{TH} = 25.864 mV.

Problem 1: Current mirror

Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answer without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

FIGURE 2

Current vs. DC voltage for current mirror of Figure 1

Select values of R_R and R_E so the mirror will have the *I-V* behavior seen in Figure 2. Assume the maximum forward CB bias in saturation is $V_{CB} = -V_{SAT} = -500$ mV. Note that all transistors have infinite Early voltages.

Problem 2: Differential amplifier

Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answer without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

FIGURE 3

Differential amplifier hooked up as a noninverting op amp

For the amplifier in Figure 3

- 1. Sketch four schematics, one for each of the cases $V_s = 10V$, 2.5V, -5V and -15V. On each schematic label the modes of all transistors and the value of V_{OUT} .
- 2. Sketch the transfer curve V_{OUT} vs. V_s for $-15V \le V_s \le 15V$.
 - 2.1. Label all key break points with V_{s} and V_{oUT} -coordinates.
 - 2.2. Label the slopes of all segments.
 - 2.3. Label the modes of all transistors in each segment of the transfer curve.

Assume the thermal voltage is V_{TH} = 25.864 mV. Assume the maximum forward CB bias is $V_{CB}(npn) = V_{BC}(pnp) = -V_{SAT} = 0$ V, and that in active mode $V_{BE}(npn) = V_{EB}(pnp) = 700$ mV. Note that all transistors have infinite Early voltages.

Problem 3: Feedback

Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answer without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

.model Qn NPN (Is={I_S} Bf={B_F} Cjc={C_JC} Cje={C_JE} Tf={T_F})

FIGURE 4

Common emitter amplifier

Select the value of resistor R_B to obtain a bandwidth of 6 MHz. Assume V_{TH} = 25.864 mV. Note that the transistor has infinite Early voltage.

Problem 4: Stability

Follow the outline procedure at the top of the exam with headings for each major step in the solution. No points for answer without an outline of the solution. A mish-mash of calculations is not an acceptable outline.

The amplifier of Figure 5 contains an RC-network to adjust its frequency response. For the amplifier of Figure 5, select C to make a feedback voltage amplifier using this open-loop amplifier exhibit a 30° phase margin when β_{FB} has a value of $1/\beta_{FB}$ = 30 dB. Use Bode plots to do your design. Assume the op amp has a gain function given by **EQ. 1**

$\Delta(f) =$	A_0	
Λ(1) -	$(1, 1, \mathbf{f})$	
	$\left(\begin{array}{c} \mathbf{I} + \mathbf{J} \overline{\mathbf{f}_1} \\ \mathbf{f_1} \end{array} \right) \left(\begin{array}{c} \mathbf{I} + \mathbf{J} \overline{\mathbf{f}_2} \\ \mathbf{f_2} \end{array} \right) \left(\begin{array}{c} \mathbf{I} + \mathbf{J} \overline{\mathbf{f}_3} \\ \mathbf{f_3} \end{array} \right)$	

with $A_0 = 10^5$ V/V, $f_1 = 10^5$ Hz, $f_2 = 10^6$ Hz, and $f_3 = 10^7$ Hz, and assume that the value of R = 10 M Ω . The op amp has infinite input resistance and zero output resistance