ECE 304: Final Exam Spring '05

NOTE: IN ALL CASES

- 1. Solve the problem on scratch paper
- 2. Once you understand your solution, put your answer on the answer sheet
- 3. Follow your answer with an outline of your solution. No points for answer without an outline of the solution. A mish-mash of computation is not an acceptable outline.

PRINT your name at the top of each answer sheet

Assume in all problems V_{TH} = 25.864 mV, and V_{BE} = $V_{TH} \ell n \{I_C(V_{CB}=0V)/I_S\}$

Problem 1: Cascode

.model Q_driver NPN (Is=10fA Bf=100 Cje=3pF Tf=500ps)

FIGURE 1

Cascode amplifier; all Early voltages are infinite

Assume $R_S = 1 \text{ k}\Omega$ and the output voltage is $V_O = -4.9V$. Notice that only the driver transistor has capacitance, and that is due to C_{π} . Capacitance C_{π} satisfies EQ. 1 below with $C_{JE} = 3 \text{ pF}$, $T_F = 500 \text{ ps}$, $I_C = \text{collector current of }Q1$.

EQ. 1

$$C_{\pi} = C_{je} + \frac{I_C \tau_F}{V_{TH}}$$
.
 $C_{\pi} = C_{je} + \frac{I_C \tau_F}{V_{TH}}$.

FIGURE 2

Small-signal gain of 51.416 dB and corner frequency of 33.492 MHz

- 1. Select the current sources I_L and I_M , and the load R_L so the amplifier of Figure 1 has the small-signal gain behavior shown in Figure 2.
- 2. If $C_{\mu} \approx 3 \text{ pF}$ were added to Q1, how much would it affect the bandwidth? Be quantitative.

FIGURE 3

Current mirror; all Early voltages are infinite

FIGURE 4

DC current-voltage behavior of mirror; mirror current is 7.041 mA at V_{AP} = -7.633 V

- 1. Select R_R and R_E so the mirror in Figure 3 has the behavior shown in Figure 4. That is, current is 7.041 mA for V_{AP} \geq -7.633 V. Check that your design satisfies these specs. Assume forward bias of the CB junction in saturation is V_{CB} = -450 mV.
- 2. Based upon circuit operation (that is, *not* just estimating numbers from Figure 4), derive a formula for the slope of the *I*-V curve in the region $V_{AP} < -7.633$ V including discussion of mode assignments to the transistors

Hint for Part 2: Assume that base-emitter voltages don't change much with V_{AP}.

FIGURE 5

FIGURE 6

Bode phase plot for open- and closed-loop amplifier

We have an amplifier with open-loop Bode plots shown in Figure 5 and Figure 6. Also shown are closed-loop Bode plots for the case of unity feedback (β_{FB} = 1 V/V).

- 1. Find a formula for the open-loop gain as a function of frequency in Hz.
- 2. Find the phase margin of the closed-loop amplifier shown.
- 3. Compensate this amplifier by adding a pole so the gain drops 20 dB/dec down to 0 dB at the next pole. Find the frequency needed for the added pole.
- 4. Sketch Bode phase and magnitude plots for the open-loop amplifier with the added pole present. Label the phase at 0 dB, and label all slopes and corners.
- 5. Find the two-pole amplifier that approximates the compensated amplifier. Will the compensated amplifier exhibit good step response? Why or why not?
- 6. Change the compensation to obtain a phase margin at 0dB of 45°. What is the revised pole frequency?
- 7. Sketch the Bode plots for the open-loop amplifier with the revised pole position. Label the phase at 0 dB, and label all slopes and corners.
- 8. Will this revised compensated amplifier exhibit good step response? Why or why not?

4. Differential amplifier

FIGURE 7

Differential amplifier; all Early voltages are infinite

FIGURE 8

Common-mode transfer characteristic

Assume R_{C} = 1 $k\Omega$ and assume maximum reverse bias of CB junction in saturation is V_{CB} = –385 mV.

1. Select I_R and R_E so the amplifier has the common mode range seen in Figure 8.

The transfer characteristic in Figure 8 exhibits four ranges, from right to left:

Range 1: $V_c > 5.578$ V, Range 2: -3.946 V < $V_c < 5.578$ V,

- Range 3: -9.52 V < V_c< -3.946 V, and Range 4: V_c < -9.52 V.
- 2. List the ranges in a vertical column, and tabulate the modes of all transistors in each range.
- 3. Based upon circuit operation (that is, *not* just estimating numbers from Figure 8), derive a formula for the slope of the transfer characteristic in each range.