# Gain and Phase Margin Problem

# Problem

Select the frequency  $f_1$  in the gain expression of EQ. 1 below to obtain a two-pole Butterworth step response for a voltage feedback amplifier with  $\beta_{FB}$  = 10 mV/V. **EQ. 1** 

$$A_{\upsilon}(f) = \frac{A_{\upsilon 0}}{\left(1 + j\frac{f}{f_1}\right)\left(1 + j\frac{f}{f_2}\right)\left(1 + j\frac{f}{f_3}\right)}$$

The frequencies  $f_2 = 10^6$ Hz and  $f_3 = 10^7$ Hz, and the low-frequency gain is  $A_{v0} = 10^5$  V/V. Also, determine the gain and phase margins of this amplifier.

## Schematic

The PSPICE circuit for this amplifier is shown in Figure 1.



### FIGURE 1

PSPICE representation of three-pole amplifier

Using the circuit of Figure 1 we can find the gain and phase plots, as shown in Figure 2 and Figure 3 below.



#### FIGURE 2

PSPICE gain plots for open lop and closed loop amplifier; this plot determines the frequency  $f_{1/\beta\_FB}$  where the open-loop gain is  $1/\beta_{FB}$ ; gain margin (26.8dB) is labeled with double arrow



#### FIGURE 3

PSPICE phase plots for open lop and closed loop amplifier; this plot determines the frequency  $f_{180}$  where the phase is  $-180^{\circ}$ ; phase margin (63°) is labeled with double arrow

### **Transient response**



### FIGURE 4

Step response of closed loop amplifier; time to first maximum is 0.98  $\mu s$  and overshoot is 5.7%

The step response in Figure 4 can be compared with the *two*-pole estimates for a Butterworth design of  $t_{MAX} = 1/(f_1 + f_2) = 1 \ \mu s$  and overshoot of 4.3%.

### **Design procedure**

For a Butterworth response we require a time constant separation factor of  $2\beta_{FB}A_{\upsilon0},$  so EQ. 2

$$\frac{\tau_1}{\tau_2} = \frac{f_2}{f_1} \approx 2\beta_{FB}A_{\upsilon 0} \ . \label{eq:tau}$$

That is,  $f_1 = f_2/(2 \times 10^{-2} \times 10^5) = 500$  Hz.

We then draw the Bode plots for EQ. 1 with the poles  $f_1$ ,  $f_2$ ,  $f_3$  that approximate Figure 2 and Figure 3, and determine the frequencies  $f_{1/\beta_{FB}}$  and  $f_{180}$ . The gain and phase margins are then **EQ. 3** 

phase margin = arg
$$\left[A_{\upsilon}(f_{1/\beta_{FB}})\right] - (-180^{\circ}) = 63^{\circ}$$

EQ. 4

gain margin = 
$$20 \ell \text{og}_{10} \left( \frac{1}{\beta_{\text{FB}}} \right) - 20 \ell \text{og}_{10} \left( |A_{\upsilon}(f_{180})| \right) = 26.9 \text{ dB}$$

The numerical work can be done very conveniently using a spreadsheet, as shown in Figure 5 below.

|            |                                                                                           |           |                  | Open-Loop  | Amplifier |          |          |
|------------|-------------------------------------------------------------------------------------------|-----------|------------------|------------|-----------|----------|----------|
| Input      | pi                                                                                        | 3.1415926 |                  | Frequency  | Phase     | Gain     | Gain(dB) |
|            | A_v0                                                                                      | 1.00E+05  | f_1/Bfb          | 4.55E+05   | -116.9913 | 1.00E+02 | 39.99993 |
|            | f_1                                                                                       | 500       | f_180            | 3.16E+06   | -180.0001 | 4.54E+00 | 13.14674 |
|            | f_2                                                                                       | 1.00E+06  | f_3dB            | 5.00E+02   | -45.03151 | 7.07E+04 | 96.9897  |
|            | f_3                                                                                       | 1.00E+07  |                  |            |           |          |          |
|            | C_1                                                                                       | 1.00E-09  |                  |            |           |          |          |
|            | B_FB                                                                                      | 1.00E-02  |                  |            |           |          |          |
|            |                                                                                           |           |                  | Feedback / | Amplifier |          |          |
| Calculated | R_1                                                                                       | 318309.89 | Phase margin     | 63.00875   |           |          |          |
|            | R_2                                                                                       | 159.15495 | Gain Margin (dB) | 26.85318   |           |          |          |
|            | R_3                                                                                       | 15.915495 |                  |            |           |          |          |
|            |                                                                                           |           |                  |            |           |          |          |
|            | A_v0 (dB)                                                                                 | 100       |                  |            |           |          |          |
|            | A_v (f_3dB)                                                                               | 96.9897   |                  |            |           |          |          |
|            | A_vFB (f_3dB)                                                                             | 36.9897   |                  |            |           |          |          |
|            | Phase=-(ATAN2(1,Frequency/f_1)+ATAN2(1,Frequency/f_2)+ATAN2(1,Frequency/f_3))*180/pi      |           |                  |            |           |          |          |
|            | Gain=A_v0/(SQRT(1+(Frequency/f_1)^2)*SQRT(1+(Frequency/f_2)^2)*SQRT(1+(Frequency/f_3)^2)) |           |                  |            |           |          |          |

#### FIGURE 5

Spreadsheet for gain and phase margin calculations

With the spreadsheet of Figure 5 the frequencies  $f_{1/\beta\_FB}$  and  $f_{180}$  are readily found using GOAL SEEK to set the magnitude to  $1/\beta_{FB}$  and the phase to  $-180^{\circ}$  by varying the frequency.

# Comment on the two-pole approximation

Figure 4 shows that the two-pole approximation to design for a Butterworth amplifier provides a good approximation for setting the lowest pole at  $f_1$  provided the higher poles are not too close to  $f_2$ . In this example the overshoot in step response (Figure 4) is a bit larger than Butterworth because the third pole makes the gain margin a little lower than for the two-pole system comprised of only of poles at  $f_1$  and  $f_2$ . The time to maximum overshoot is very nearly as expected.

If we move  $f_3$  to very high frequency, the modified system approaches a two-pole system with phase margin 65.6°, a bit larger than our original system with 63° margin. So a two-pole estimate of phase margin is not a bad approximation, and accounts for the success of the two-pole Butterworth design.

However, the two-pole estimate of gain margin is terrible, as explained next. You may recall that a two-pole system is always stable, with  $f_{180} = \infty$ . Of course, no real amplifier has  $f_{180} = \infty$ , so this two-pole estimate of  $f_{180}$  is hopelessly inaccurate. Because the gain of any amplifier tends to zero at very high frequencies, the gain  $\rightarrow 0$  as  $f_{180} \rightarrow \infty$ . That is, the poor estimate of  $f_{180}$  using a two-pole system makes the two-pole estimate of gain margin hopelessly inaccurate for any real amplifier ( $\ell og_{10}(0) = -$  infinity), even if the two-pole system approximates the gain curve guite well over a range of frequencies from low values to somewhere above the second pole.

For these reasons, it is more useful to focus on phase margin as a stability estimate when using a two-pole approximation, not gain margin.