ECE 304 Exam 3 Spring 05 Solutions

NOTE: IN ALL CASES

- 1. Solve the problem on scratch paper
- 2. Once you understand your solution, put your answer on the answer sheet
- 3. Follow your answer with an outline of your solution. No points for answer without an outline of the solution. A mish-mash of computation is not an acceptable outline.

PRINT your name at the top of each answer sheet

Assume V_{TH} = 25.864 mV in all problems and maximum collector-base forward bias in saturation is V_{CB} = 0 V. Where V_{BE} is needed, evaluate it using V_{BE} = $V_{TH} \ell n(I_C/I_S)$.

Problem 1: Voltage follower

FIGURE 1

Voltage follower for Problem 1

A square-wave voltage is input as signal, as shown in Figure 2.

FIGURE 2

Input square wave $v_{IN}(t) = 10 \ sq(t)$

FUNCTION sq(t) is a unit AMPLITUDE SQUARE WAVE, +1 IN POSITIVE HALF-CYCLE AND -1 IN NEGATIVE HALF CYCLE. The input voltage is $\upsilon_{IN}(t) = 10 \ sq(t)$.

1. Construct the DC input-output transfer curve υ_{OUT} vs. υ_{IN} . Label all corners and levels.

ANSWER:

See Figure 3 next page.

Friday, February 25, 2005, calculators required, closed book

FIGURE 3

Input-output transfer curve for voltage follower

OUTLINE:

As this is a voltage follower, the gain should be close to 1 V/V, with the output following the input, but V_{BE} lower.

Mirror

FIGURE 4

Mirror schematic

The mirror current is given by Ohm's law as **EQ. 1**

$$I_{M} = \frac{V_{CC} - V_{BEM}}{R_{R}(1+2/\beta)}$$

The diode law then determines V_{BEM} by iteration: **EQ. 2**

$$V_{\text{BEM}} = V_{\text{TH}} \ell n \left(\frac{I_{\text{M}}}{I_{\text{S}}} \right) = V_{\text{TH}} \ell n \left(\frac{V_{\text{CC}} - V_{\text{BEM}}}{I_{\text{S}} R_{\text{R}} (1 + 2 \, / \, \beta)} \right) = 756.6 \text{ mV},$$
$$I_{\text{M}} = 50.72 \text{ mA}.$$

ZERO OUTPUT CASE

FIGURE 6

Maximum output voltage case; transistor is saturated

At the maximum input voltage, the base can exceed the collector by zero voltage ($V_{CB}(Sat) = 0V$ is given). Therefore, the transistor saturates when $\upsilon_I = V_{CC}$. At this input voltage, the output voltage is V_{BE} lower, where V_{BE} is given by the diode law as **EQ. 3**

$$V_{BE} = V_{TH} \ell n \left(\frac{I_{M} + V_O / R_L}{I_S(1+1/\beta)} \right) = V_{TH} \ell n \left(\frac{I_{M} + (V_{CC} - V_{BE}) / R_L}{I_S(1+1/\beta)} \right) = 790.7 \text{ mV}.$$

EQ. 3 is solved by iteration. Then $\upsilon_{O} = \upsilon_{I} - V_{BE} = 15 - 790.7 \text{ mV} = 14.209 \text{ V}.$

LOW VOLTAGE OUTPUT

FIGURE 7

In the low voltage case $v_0 = -V_0$ and the transistor is limited by cutoff

Because all Early voltages are infinite, the mirror current remains I_M . Invoking cutoff as the limiting mechanism, KCL at the emitter node of the input transistor provides **EQ. 4**

$$I_M = V_O/R_L \rightarrow V_O = I_M R_L = 5.072 \text{ V},$$

and $\upsilon_0 = -V_0 = -5.072 \text{ V}$. If the transistor is actually in cutoff, $V_{BE} = 0 \text{ V}$, which means that $\upsilon_1 = \upsilon_0$. However, the transistor turn-on is exponential (that is, very rapid). As the output voltage increases above the cutoff value of 5.072 V, V_{BE} will rapidly increase, and the slope of $\upsilon_0 \text{ vs. } \upsilon_1$ will quickly approach 1 V/V again. Therefore, to estimate the υ_1 in the low voltage case, we extend the unity slope line for positive output voltages already found down to negative output voltages. The input voltage is then approximately given by $\upsilon_1 \approx \upsilon_0 + V_{BE}(\upsilon_0 = 0V) = -5.072 + 756.6 \text{ mV} = -4.316V.$

FIGURE 8

PSPICE υ_0 vs. υ_1 transfer curve; the value of υ_{IN} = -4.316V locates the end of the unity slope region pretty accurately

PSPICE calculation of gain showing steep transition of the gain to 1V/V as the input takes the transistor out of cutoff; at the high voltage end, the transistor can go past the onset of saturation by 756 mV before the gain suffers: that is, V_{SAT} is 756 mV, not zero as assumed in this problem

2. Show how $\upsilon_{OUT}(t)$ is constructed for $\upsilon_{IN}(t)$ using the DC transfer characteristic. clipped Answer

FIGURE 10

Construction of output waveform using DC input-output transfer function

The V_{BE}-offset of the transfer function along the x-axis causes the output waveform to translate downward in voltage $(\upsilon_O = \upsilon_I - V_{BE})$. Selecting a time t₁ on the input waveform, corresponding voltage $\upsilon_I(t_1)$ is tracked upward to the υ_I -axis of the transfer plot. The corresponding υ_O is found from the transfer curve and plotted on the output waveform at the same time t₁. Where the transfer curve has zero gain, all input waveform points in the zero gain region plot at the same output level in the output waveform, causing clipping of the output waveform. Examples are clipping at time t₂ on the upswing at 14.209 V, and at time t₃ on the downswing at -5.072V.

ANSWER

See Figure 11.

Output waveform for a square wave input $\upsilon_l(t) = 10 \ sq(t)$; for hand analysis, the value of V_{BE} at zero output voltage is used, making the maximum voltage from hand analysis $\upsilon_0 = 9.24$ V instead of the PSPICE value 9.22V

OUTLINE

At υ_I = 10V, υ_O = 10V–V_{BE} = 10 – 756.1mV = 9.24V. At υ_I = –10V, the VF cuts off and υ_O = min V_O = –5.07 V

 Express the output waveform as a DC part plus a transient part that has zero time average over a cycle. That is, υ_{OUT}(t) = V_{DC} + V_{AC}sq (t)

ANSWER

OUTLINE

At the positive maximum, $V_{DC} + V_{AC} = 9.24V$. At the negative minimum, $V_{DC} - V_{AC} = -5.07V$. Adding these two equations, $V_{DC} = (9.24-5.07)/2 = 2.09 V$. Subtracting them, $V_{AC} = (9.24+5.07)/2 = 7.16 V$.

 Calculate the power efficiency counting only the output power related to the transient voltage V_{AC}sq(t) as useful power.

ANSWER

OUTLINE

Useful power is the AC output power. Since the AC output voltage is the same in both halves of the cycle,

EQ. 5

$$P_{USEFUL} = V_{AC}^2/R_L = 7.16^2/100 = 512 \text{ mW}.$$

The power input to the circuit (neglecting the base current contribution) has two parts. The instantaneous input from the positive voltage source is $p_P(t) = V_P \iota_C(t)$, with the instantaneous current

EQ. 6

$$u_{C}(t) = \beta u_{E}(t)/(\beta+1) = \frac{\beta}{\beta+1} \left(I_{M} + \frac{\upsilon_{O}(t)}{R_{L}} \right) = \frac{\beta}{\beta+1} \left(I_{M} + \frac{V_{DC} + V_{AC}sq(t)}{R_{L}} \right).$$

Integrating over a cycle, the sq (t) averages to zero as it has equal up and down swings. Therefore, the average DC input power is

EQ. 7

$$P_{P} = \frac{\beta}{\beta + 1} \left(I_{M} + \frac{V_{DC}}{R_{L}} \right) V_{CC} = \frac{50}{51} \left(5.07 + \frac{2.09}{100} \right) 15 = 1.053 \text{ W}$$

The current to the negative source all comes from the mirror, which carries a constant DC current. The emitter currents of both Q2 and Q3 flow through the negative source, so the power input from the negative supply is given by EQ. 8 below.

Friday, February 25, 2005, calculators required, closed book

EQ. 8

$$P_N = (1+1/\beta) 2I_M V_{CC} = 1.552 W$$

Therefore, the amplifier efficiency is **EQ. 9**

$$\eta = \frac{P_{useful}}{P_N + P_P} = \frac{512mW}{1.053 + 1.552} = 19.7\%.$$

Problem 2: Class AB amplifier

FIGURE 12

Class AB amplifier; Early voltage is infinity for all transistors

In the following, first derive a FORMULA for the answer using only variables (no numbers); then EVALUATE your formula.

For the parameters given in Figure 12 determine:

1. The emitter current of Q1 when the output voltage is zero **ANSWER**

$$I_{Q} = \frac{I_{B}}{\frac{1}{\beta_{N} + 1} + \frac{(1 + 1/\beta_{D})I_{SD}}{(1 + 1/\beta_{N})I_{SN}}} = 22.2 \text{ mA}$$

OUTLINE The base-to-base voltage is EQ. 10

$$V_{BB} = 2V_{TH}\ell n \left(\frac{I_B - \frac{I_Q}{\beta_N + 1}}{(1 + 1/\beta_D)I_{SD}} \right) = V_{TH}\ell n \left(\frac{I_Q}{(1 + 1/\beta_N)I_{SN}} \right) + V_{TH}\ell n \left(\frac{I_Q}{(1 + 1/\beta_P)I_{SP}} \right) = 2V_{TH}\ell n \left(\frac{I_Q}{(1 + 1/\beta_N)I_{SN}} \right)$$

where the last step uses the fact that the NPN and PNP output transistors are matched. Because the logarithms are equal, the arguments of the logarithms are equal, so **EQ. 11**

$$\frac{I_{B} - \frac{I_{Q}}{\beta_{N} + 1}}{(1 + 1/\beta_{D})I_{SD}} = \frac{I_{Q}}{(1 + 1/\beta_{N})I_{SN}}.$$

Solving for I_Q we find **EQ. 12**

$$I_{Q} = \frac{I_{B}}{\frac{1}{\beta_{N} + 1} + \frac{(1 + 1/\beta_{D})I_{SD}}{(1 + 1/\beta_{N})I_{SN}}} = 22.2 \text{ mA}.$$

2. The maximum and minimum output voltages

ANSWER

$$\upsilon_{O}(max) = I_{B}(\beta_{N}+1)R_{L} = 7.8 \text{ V}; \ \upsilon_{O}(min) = -V_{CC} + V_{EB} = -14.28 \text{ V}.$$

OUTLINE

The maximum output voltage occurs when all of I_B is used as base current to the NPN, making the output current the largest possible. In this case the output current is $I_B(\beta_N+1)$, and if the PNP is cutoff all this current goes through the load resistor R_L , so $v_O(max) = (\beta_N+1) I_B R_L$.

The minimum output voltage occurs when $\upsilon_{IN} = -V_{CC}$, causing the PNP transistor to saturate. When $\upsilon_{IN} = -V_{CC}$, the output voltage is $\upsilon_{O} = \upsilon_{IN} + V_{EB}$, leading to a collector current in the PNP EQ. 13

$$I_{\rm C} = \frac{V_{\rm CC} - V_{\rm EB}}{(1+1/\beta_{\rm P})R_{\rm L}};$$

With EQ. 13 we can find V_{EB} by iteration using the diode law EQ. 14

$$V_{EB} = V_{TH} \ell n \left(\frac{I_C}{I_{SP}} \right) \rightarrow V_{EB} = 722.8 \text{ mV}, \upsilon_O(\text{min}) -= -14.28 \text{ V}.$$

3. The small-signal gain at zero output voltage

ANSWER

EQ. 15

$$\frac{V_{O}}{V_{S}} = \frac{1}{1 + \frac{r_{\pi}}{(\beta_{N} + 1)R_{L}} \frac{2r_{E} + r_{\pi}}{[2r_{E} + 2r_{\pi}]}} = 0.993 \text{ V/V},$$

where r_E = diode-connected transistor resistance and r_{π} = NPN output transistor input resistance.

OUTLINE

The value of r_E is found using **EQ. 16**

$$r_{E} = \frac{V_{TH}}{I_{E}(diode)} = \frac{V_{TH}}{I_{B} - \frac{I_{Q}}{\beta_{N} + 1}} = 12.05 \,\Omega.$$

The value of r_{π} is found using **EQ. 17**

$$r_{\pi} = \frac{\beta_N V_{TH}}{I_C (NPN)} = \frac{(\beta_N + 1)V_{TH}}{I_Q} = 30.28 \ \Omega \,. \label{eq:r_prod}$$

Small-signal circuit for gain analysis

The small-signal circuit is shown in Figure 13. KVL along the bottom of Figure 13 provides EQ. 18 below.

EQ. 18

$$V_S = V_O - \left((\beta_N + 1)I_B - \frac{V_O}{R_L} \right) \frac{r_\pi}{\beta_P + 1} \, . \label{eq:VS}$$

KVL around the interior loop provides **EQ. 19**

$$I_B(2r_E + r_{\pi}) + \left((\beta_N + 1)I_B - \frac{V_O}{R_L} \right) \frac{r_{\pi}}{\beta_P + 1} = 0$$
.

We solve for I_{B} and substitute the result in Eq. 18 to find EQ. 20

$$V_{S} = V_{O} \left(1 + \frac{r_{\pi}}{(\beta_{P} + 1)R_{L}} \left(\frac{2r_{E} + r_{\pi}}{2r_{E} + \left(1 + \frac{\beta_{N} + 1}{\beta_{P} + 1}\right)r_{\pi}} \right) \right).$$

Because the transistors are matched, $\beta_N = \beta_P$ and EQ. 20 leads to EQ. 15.

4. If only B_FN is varied, what value of B_FN will result in a positive output level for $V_{IN} = 7.5 \text{ V}$ equal in magnitude to the negative output level for $V_{IN} = -7.5 \text{ V}$?

ANSWER

EQ. 21

$$\beta_{N} = \frac{V_{O}}{I_{B}R_{L}} - 1 = 21.65$$

OUTLINE

On the positive swing, the diodes raise the base of the NPN by $2V_D$ and the NPN drops the output by V_{BE} below the base. Hence, the output will be $V_O = V_I + 2 V_D - V_{BE}$.

On positive swing V_O = V_{IN} + 2V_D - V_{BE} = 7.5 + $2V_D - V_{BE}$

FIGURE 15

On negative swing,
$$-V_O = V_{IN} + V_{EB} \rightarrow V_O = 7.5 - V_{EB}$$

On the negative swing, the diodes have no effect and the input is V_{EB} below the output. We set the output voltages to be V_O for positive input and $(-V_O)$ for negative input, which makes both load currents V_O/R_L the same. That means for matched transistors V_{EB} (negative input) = V_{BE} (positive input). Therefore, for matched transistors we will get the same V_O for the same input V_{IN} (except for sign) only if $V_D = 0$. To get zero diode drop we need zero diode current. ¹ Consequently, zero V_D implies β_N should be chosen so **EQ. 22**

$$I_{B} = \frac{V_{O}}{(\beta_{N} + 1)R_{L}}$$

or, see EQ. 23 below:

EQ. 23

$$\beta_{\rm N} = \frac{V_{\rm O}}{I_{\rm B}\,R_{\rm L}} - 1 = 21.65$$

With this value of β_N , the diode voltage is zero, but the NPN transistor V_{BE} has changed to EQ. 24 below.

10

¹ The current and diode voltage are related by $I_D = I_S \left(e^{\upsilon_D / V_{TH}} - 1 \right) \rightarrow 0$ as $\upsilon_D \rightarrow 0 V$.

EQ. 24

$$V_{BE} = V_{TH}\ell n \left(\frac{V_O \ / \ R_L}{\left(\beta_N + 1\right)_{ISN}} \right) = V_{BE}(\beta_N = \beta_P) + V_{TH}\ell n \left(\frac{\beta_P + 1}{\beta_N + 1} \right) = V_{BE}(\beta_N = \beta_P) + 0.0036V$$

where $V_{BE}(\beta_N=\beta_P)$ is the NPN V_{BE} for the case of matched transistors with $\beta_N = \beta_P$. EQ. 24 shows a small increase in V_{BE} because of the change in β_N , which no longer is the same as β_P , but smaller. This increase in V_{BE} means we need to increase the diode drop above zero to a few mV to compensate for the change in β_N , but this correction in V_D according to the diode law is not significant, corresponding to only a change in current about the same size as the scale current of the diodes.

It turns out that a more serious error is the assumption that the NPN completely cuts off when the negative voltage is applied. It does not completely cut off, but correcting this error also causes little change in β_N , as seen in the PSPICE results of Figure 16 and Figure 17 below.

FIGURE 16

PSPICE output for input voltage of 7.5 V; PNP and diode-connected transistors are cutoff, as assumed

FIGURE 17

PSPICE output for input voltage of -7.5 V; NPN transistor is not cutoff, contrary to our assumption, but the output voltage is 6.793V, very close to 6.796 V from Figure 16

11