ECE 304: Exam 2 Spring '05 Solutions

NOTE: IN ALL CASES

1. Solve the problem on scratch paper
2. Once you understand your solution, put your answer on the answer sheet
3. Follow your answer with an outline of your solution. No points for answer without an outline of the solution. A mish-mash of computation is not an acceptable outline.
PRINT your name at the top of each answer sheet
Assume $\mathrm{V}_{\mathrm{TH}}=25.864 \mathrm{mV}$ in all problems

Problem 1: Two port

Figure 1
Circuit to be analyzed as a two port
Choosing as independent variables V_{B} and I_{C}, find the two-port network equivalent to Figure 1.

Answer

Figure 2
Two port equivalent to Figure 1
Components in Figure 2 are related to those in Figure 1 by
EQ. 1

$$
\begin{array}{ll}
\mathrm{R}_{11}=\mathrm{R}_{\pi} / /\left(\frac{\mathrm{R}_{\mu}+\mathrm{R}_{\mathrm{O}}}{1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{O}}}\right), & \mathrm{R}_{22}=\mathrm{R}_{\mu} / / \mathrm{R}_{\mathrm{O}} \\
\beta_{\mathrm{FB}}=-\frac{\mathrm{R}_{\mathrm{O}}}{\mathrm{R}_{\mu}+\mathrm{R}_{\mathrm{O}}} & \gamma_{\mathrm{FB}}=\frac{\mathrm{R}_{\mathrm{O}}}{\mathrm{R}_{\mu}+\mathrm{R}_{\mathrm{O}}}\left(1-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mu}\right)
\end{array}
$$

Note:
Some students wanted to interpret this circuit as the small-signal equivalent circuit of a bipolar, and so determined that $g_{m}=\beta / r_{\pi}$. I have no problem with that. However, as Figure 2 is a smallsignal AC circuit, I_{C} in Figure 2 is a small-signal AC current. Therefore, I_{C} in Figure 2 cannot be interpreted as the DC collector current I_{C} that enters the definition $g_{m}=I_{C} / V_{T H}$.

Outline

Figure 3
Open circuit right side to eliminate dependent current source in two port
Comparing Figure 3 with the two port with open-circuit on right and voltage source on the left we find from KVL
EQ. 2

$$
V_{B}=\left(I_{B}-V_{B} / R_{\pi}\right) R_{\mu}+\left(I_{B}-V_{B} / R_{\pi}-g_{m} V_{B}\right) R_{O} ;
$$

Combing terms and using $R_{11}=V_{B} / I_{B}$, we find the given value for R_{11}.
Comparing the voltage at the right of Figure 3 with the two port we find from Ohm's law EQ. 3

$$
\gamma_{\mathrm{FB}} \mathrm{~V}_{\mathrm{B}}=\left(\mathrm{I}_{\mathrm{B}}-\mathrm{V}_{\mathrm{B}} / \mathrm{R}_{\pi}-\mathrm{g}_{\mathrm{m}} \mathrm{~V}_{\mathrm{B}}\right) \mathrm{R}_{\mathrm{O}} ;
$$

Collecting terms and using I_{B} as found in EQ. 2, we determine $\gamma_{F B}$ as given.

Figure 4
Short circuit left side to eliminate dependent voltage source in two port
With the left side shorted, $\mathrm{V}_{\pi}=0 \mathrm{~V}$ and the dependent current source in Figure 4 is an open circuit. Evidently R_{μ} and R_{O} are in parallel, and $R_{22}=V_{C} / I_{C}$ is as given. The short-circuit current from node B to ground is given by the current divider as $I_{C}\left(R_{O} /\left(R_{O}+R_{\mu}\right)\right.$, and flows in the opposite direction to $\beta_{F B} I_{C}$ in the two port. Therefore, $\beta_{F B}$ is the negative of this divider ratio, as given.

Problem 2: Differential amplifier

Figure 5
Differential amplifier; note that $\mathrm{R}_{\mathrm{C} 1}$ is not the same as $\mathrm{R}_{\mathrm{C} 2}$, and transistors are ideal with infinite Early voltages

1. Make a table on your answer sheet like the one below, and fill it in. Assume that in the active mode $\mathrm{V}_{\mathrm{BE}}=650 \mathrm{mV}$ and in saturation $\mathrm{V}_{\mathrm{CB}}=-650 \mathrm{mV}$.

$\mathbf{V 2}$	Mode Q1	Mode Q2	VBE1	VBE2	VE	VC1	VC2	IC1	IC2	IB1	IB2
$\mathbf{- 4}$	A	CO	650 mV	-4.35 V	350 mV	7.79 V	15 V	14.4 mA	0	$577 \mu \mathrm{~A}$	0
$\mathbf{1}$	A	A	650 mV	650 mV	350 mV	11.39 V	7.79 V	7.21 mA	7.21 mA	$288 \mu \mathrm{~A}$	$288 \mu \mathrm{~A}$
$\mathbf{2}$	CO	S	-350 mV	650 mV	1.35 V	15 V	1.35 V	0	13.65 mA	0	1.35 mA
$\mathbf{4}$	CO	S	-2.35 V	650 mV	3.35 V	15 V	3.35 V	0	11.65 mA	0	3.35 mA

Note

Outline your solution only for $\mathrm{V}_{2}=-4 \mathrm{~V}$ and for $\mathrm{V}_{2}=4 \mathrm{~V}$.

Outline

$$
V_{2}=-4 V
$$

Figure 6
$D A$ for $V_{2}=-4 V$
Because $V_{B E}(Q 2) \ll V_{B E}(Q 1), Q 2$ is cut off. Assuming $Q 1$ is active as a first guess, the collector current of Q1 is 14.42 mA , which implies a voltage drop across 500Ω of 7.21 V . Hence, $\mathrm{V}_{\mathrm{C}}(\mathrm{Q} 1)=$ $15-7.21=7.79 \mathrm{~V}$, which means $\mathrm{V}_{\mathrm{CB}}(\mathrm{Q} 1)>0$, and Q 1 is active as assumed, not saturated. Using the given $\mathrm{V}_{\mathrm{BE}}=650 \mathrm{mV}, \mathrm{V}_{\mathrm{E}}=\mathrm{V}_{1}-0.65=350 \mathrm{mV}$. $\mathrm{V}_{\mathrm{BE}}(\mathrm{Q} 2)=-4-\mathrm{V}_{\mathrm{E}}=-4.35 \mathrm{~V}$. As Q 2 is cut off, there is no current through its collector resistor, and $\mathrm{V}_{\mathrm{C} 2}=\mathrm{V}_{\mathrm{Cc}}=15 \mathrm{~V}$.

$$
V_{2}=4 \mathrm{~V}
$$

Figure 7
$D A$ for $V_{2}=4 V$ using initial guess that $Q 2$ is active

Following the same argument as for $\mathrm{V}_{2}=-4 \mathrm{~V}$, we decide that Q 1 is cut off and guess Q 2 is active. The voltage $\mathrm{V}_{\mathrm{C} 2}$ is then $\mathrm{V}_{\mathrm{C} 2}=15-14.42 \mathrm{~mA} \times 1 \mathrm{k} \Omega=0.57 \mathrm{~V}$, making the collector below the base, which is at $\mathrm{V}_{2}=4 \mathrm{~V}$. Therefore, Q 2 is not active but saturated.

Figure 8
Revised version of DA for $\mathrm{V}_{2}=4 \mathrm{~V}$ assuming Q2 is saturated
If Q 2 is saturated, $\mathrm{V}_{\mathrm{CB}}=-650 \mathrm{mV}$, so its collector voltage is $4 \mathrm{~V}-650 \mathrm{mV}=3.35 \mathrm{~V}$. Therefore, its collector current is $\mathrm{I}_{\mathrm{C} 2}=(15-3.35) / 1 \mathrm{k} \Omega=11.65 \mathrm{~mA}$. Using KCL for the surface shown as a circle in Figure 8, $\mathrm{I}_{\mathrm{B}}(\mathrm{Q} 2)+\mathrm{I}_{\mathrm{C}}(\mathrm{Q} 2)=\mathrm{I}_{\mathrm{T}} \rightarrow \mathrm{I}_{\mathrm{B}}(\mathrm{Q} 2)=15 \mathrm{~mA}-11.65 \mathrm{~mA}=3.35 \mathrm{~mA}$. No current contribution to I_{T} comes from Q1 because it is cut off. Also, $\mathrm{V}_{\mathrm{C}}(\mathrm{Q} 1)=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$. The emitter voltage is controlled by Q2, as it carries the current, so $\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{2}-\mathrm{V}_{\mathrm{BE} 2}=4-0.65=3.35 \mathrm{~V}$. Consequently $\mathrm{V}_{\mathrm{BE} 1}=1 \mathrm{~V}-3.35 \mathrm{~V}=-2.35 \mathrm{~V}$.
2. For $\mathrm{V}_{1}=1 \mathrm{~V}$, voltage V_{2} is adjusted to make $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$ the same. Determine the value of V_{2} for which $\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{C} 2}$, and the corresponding value of $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{C} 2}$. Assume $\mathrm{V}_{\mathrm{TH}}=25.864 \mathrm{mV}$ and use $\mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{TH}} \ln \left(\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{S}}\right)$ to find V_{BE}.

Answer

$\mathrm{V}_{2}=981.9786 \mathrm{mV} ; \mathrm{V}_{\mathrm{C}}=10.1923 \mathrm{~V}$

Outline
We find the collector currents using Ohm's law, and use these currents to find V_{BE} for Q1 and Q2. Then these V_{BE} values are used to find two estimates for the emitter voltage, V_{E}, determining V_{2}.
The collector currents are
EQ. 4

$$
\mathrm{I}_{\mathrm{C} 1}=\left(15-\mathrm{V}_{\mathrm{C}}\right) / 500 \Omega ; \quad \mathrm{I}_{\mathrm{C} 2}=\left(15-\mathrm{V}_{\mathrm{C}}\right) / 1 \mathrm{k} \Omega
$$

The $V_{B E}$ values are
EQ. 5

$$
\mathrm{V}_{\mathrm{BE} 1}=\mathrm{V}_{\mathrm{TH}} \ln \left(\mathrm{I}_{\mathrm{C} 1} / I_{\mathrm{S}}\right) ; \quad \mathrm{V}_{\mathrm{BE} 2}=\mathrm{V}_{\mathrm{TH}} \ln \left(\mathrm{I}_{\mathrm{C} 2} / \mathrm{I}_{\mathrm{S}}\right)
$$

The emitter voltage is then
EQ. 6

$$
\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{1}-\mathrm{V}_{\mathrm{BE} 1}=1-\mathrm{V}_{\mathrm{TH}} \ell \mathrm{n}\left(\mathrm{I}_{\mathrm{C} 1} / \mathrm{I}_{\mathrm{S}}\right)=\mathrm{V}_{2}-\mathrm{V}_{\mathrm{BE} 2}=\mathrm{V}_{2}-\mathrm{V}_{\mathrm{TH}} \ell \mathrm{n}\left(\mathrm{I}_{\mathrm{C} 2} / \mathrm{I}_{\mathrm{S}}\right)
$$

Using $\ell n(x)-\ell n(y)=\ell n(x / y)$ we find
EQ. 7

$$
1-\mathrm{V}_{2}=\mathrm{V}_{\mathrm{TH}} \ln \left(\mathrm{I}_{\mathrm{C} 1} / \mathrm{I}_{\mathrm{C} 2}\right)=\mathrm{V}_{\mathrm{TH}} \ln \left(\frac{15-\mathrm{VC}}{500 \Omega} \bullet \frac{1 \mathrm{k} \Omega}{15-\mathrm{VC}}\right)=\mathrm{V}_{\mathrm{TH}} \ell \mathrm{n} 2 .
$$

Hence,
EQ. 8

$$
V_{2}=1-V_{T H} \ell \mathrm{n} 2=982.07 \mathrm{mV}
$$

To find V_{C} we use KCL at the emitter node to find EQ. 9

$$
\left(\frac{15-\mathrm{V}_{\mathrm{C}}}{500}+\frac{15-\mathrm{V}_{\mathrm{C}}}{1 \mathrm{k}}\right)\left(1+\frac{1}{\beta}\right)=15 \mathrm{~mA} \rightarrow \mathrm{~V}_{\mathrm{C}}=10.192 \mathrm{~V} .
$$

Problem 3: Noninverting amplifier

Figure 9
Noninverting amplifier

1. Assuming the DA behaves like an ideal operational amplifier, derive a formula that relates a change in $\mathrm{V}_{\mathbb{I N}^{N}}$, say $\Delta \mathrm{V}_{\mathbb{N}}$, and a change in $\mathrm{V}_{\text {OUT }}$, say $\Delta \mathrm{V}_{\text {OUT }}$, as a function of R_{T} and R_{B}.

Answer

EQ. 10

$$
\Delta V_{\text {OUT }}=\left(1+R_{T} / R_{B}\right) \Delta V_{\text {IN }}
$$

Outline

Figure 10
Ideal op amp circuit with infinite input $\mathrm{R}(\mathrm{I}=0 \mathrm{~A})$ and infinite gain $\left(\Delta \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}\right)$
Because $\Delta \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{IN}}=\Delta \mathrm{V}_{\text {OUT }} \mathrm{R}_{\mathrm{B}} /\left(\mathrm{R}_{\mathrm{T}}+\mathrm{R}_{\mathrm{B}}\right) \rightarrow \Delta \mathrm{V}_{\text {OUT }}=\left(1+\mathrm{R}_{\mathrm{T}} / \mathrm{R}_{\mathrm{B}}\right) \Delta \mathrm{V}_{\text {IN }}$
2. Assuming an input transient saw tooth input like Figure 11, and approximating the noninverting amplifier gain as $\Delta \mathrm{V}_{\text {OUT }}=3 \Delta \mathrm{~V}_{\text {IN }}$, what is a formula for the maximum saw tooth amplitude for which the output and input waveforms from the circuit of Figure 9 approximately satisfy this ideal gain relation? What is its numerical value? What is the mechanism that limits this amplitude?

Figure 11
Example of input saw tooth, showing definition of amplitude

Answer

$\hat{V}=\frac{I_{C}}{\frac{2}{R_{T}}+\frac{3}{R_{C}}}=1.36 \mathrm{~V}$ limited by cut off.

Outline

Cutoff analysis

Figure 12
Cutoff analysis
The value of ΔI_{C} is found by analyzing the AC current at the collector of Q2. The output swings up by $3 \hat{V}$, and the base of $Q 2$ by \hat{V}, placing a drop of $2 \hat{V}$ across R_{T}. Also the voltage across R_{C} above Q2 drops by $3 \hat{V}$. Consequently the change in collector current of Q 2 is an upward current EQ. 11

$$
\Delta I_{C}=\frac{2 \hat{V}}{R_{T}}+\frac{3 \hat{V}}{R_{C}} .
$$

Cutoff of Q2 will occur if this AC current cancels the DC collector current of Q2, Ic. Therefore, the condition for cut off of Q2 is
EQ. 12

$$
\mathrm{I}_{\mathrm{C}}=\Delta \mathrm{I}_{\mathrm{C}}=\frac{2 \hat{\mathrm{~V}}}{\mathrm{R}_{\mathrm{T}}}+\frac{3 \hat{\mathrm{~V}}}{\mathrm{R}_{\mathrm{C}}} .
$$

Solving for \hat{V} and using the given value of $I_{C}=10 \mathrm{~mA}$, the maximum swing that will not cause cut off is
EQ. 13

$$
\hat{V}=\frac{\mathrm{I}_{\mathrm{C}}}{\frac{2}{\mathrm{R}_{\mathrm{T}}}+\frac{3}{\mathrm{R}_{\mathrm{C}}}}=\frac{10 \mathrm{~mA}}{\frac{2}{1.5 \mathrm{k} \Omega}+\frac{3}{500 \Omega}}=1.36 \mathrm{~V} .
$$

Saturation analysis

Figure 13
Saturation analysis
When the input swings up by \hat{V}, the collector current of $Q 1$ increases by $\Delta \mathrm{I}_{c}$. This increase in current causes an increased voltage drop across R_{C} of $\Delta V_{C}=\Delta l_{C} R_{C}$. If this drop is large enough, Q1 will saturate. The condition for saturation is $V_{C B}(Q 1)=0 V$, or
EQ. 14

$$
\mathrm{V}_{\mathrm{c}}-\Delta \mathrm{V}_{\mathrm{C}}=\hat{\mathrm{V}}
$$

Here $\mathrm{V}_{\mathrm{C}}=$ Q-point value of $\mathrm{V}_{\mathrm{C}}=10 \mathrm{~V}$. To find a value for $\Delta \mathrm{V}_{\mathrm{C}}=\Delta \mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}$ we need a value for $\Delta \mathrm{I}_{\mathrm{C}}$. The value of ΔI_{C} is found by analyzing the AC current at the collector of Q2. The output swings up by $3 \hat{V}$, and the base of $Q 2$ by \hat{V}, placing a drop of $2 \hat{V}$ across R_{T}. Also the voltage across R_{C} above Q2 drops by $3 \hat{V}$. Consequently the change in collector current of Q 2 is
EQ. 15

$$
\Delta \mathrm{I}_{\mathrm{C}}=\frac{2 \hat{\mathrm{~V}}}{\mathrm{R}_{\mathrm{T}}}+\frac{3 \hat{\mathrm{~V}}}{\mathrm{R}_{\mathrm{C}}} .
$$

Because the sum of the emitter currents of Q1 and Q2 is a constant value I_{T}, the decrease in collector current of Q2 is the same as the increase in collector current of Q1. Hence, we have determined $\Delta \mathrm{I}_{\mathrm{C}}$. Substituting into EQ. 14 we find EQ. 16

$$
\mathrm{V}_{\mathrm{C}}-\Delta \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C}}-\Delta \mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C}}-\left(\frac{2 \hat{\mathrm{~V}}}{\mathrm{R}_{\mathrm{T}}}+\frac{3 \hat{\mathrm{~V}}}{\mathrm{R}_{\mathrm{C}}}\right) \mathrm{R}_{\mathrm{C}}=\hat{\mathrm{V}} .
$$

Collecting terms we find the maximum swing that will not cause saturation of Q1, namely EQ. 17

$$
\hat{V}=\frac{V_{C}}{4+2 \frac{R_{C}}{R_{T}}}=\frac{10}{4+2 \frac{500 \Omega}{1.5 \mathrm{k} \Omega}}=2.14 \mathrm{~V}
$$

Comparing EQ. 13 with EQ. 17 we see that it is cutoff that provides the more serious limitation, so the maximum swing will be $\hat{\mathrm{V}}=1.36 \mathrm{~V}$.
3. What is the formula for the small-signal gain of the amplifier at the bias point shown in Figure 9 , and its numerical value?

Answer
The gain $\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}=\frac{\beta \mathrm{R}_{\mathrm{T}}+(\beta+1) \mathrm{R}_{\mathrm{B}}}{2 r_{\pi}\left(1+\frac{\mathrm{R}_{\mathrm{T}}+\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{C}}}\right)+\mathrm{R}_{\mathrm{B}}\left(\beta+1+\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{R}_{\mathrm{C}}}\right)}=2.84 \mathrm{~V} / \mathrm{V}$.
Outline

Figure 14
Small-signal circuit
KVL down the feedback network provides
EQ. 18

$$
V_{O}=\left(\beta I_{b}-\frac{V_{O}}{R_{C}}\right) \cdot\left(R_{T}+R_{B}\right)+I_{b} R_{B}
$$

which can be solved for I_{b}.
EQ. 19

$$
I_{b}=V_{O}\left(\frac{1+\frac{R_{T}+R_{B}}{R_{C}}}{\beta R_{T}+(\beta+1) R_{B}}\right)
$$

KVL from node in through R_{B} to ground provides
EQ. 20

$$
V_{\mathrm{I}}=\mathrm{I}_{\mathrm{b}}\left(2 \mathrm{r}_{\pi}\right)+\left((\beta+1) \mathrm{I}_{\mathrm{b}}-\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{R}_{\mathrm{C}}}\right) \mathrm{R}_{\mathrm{B}}
$$

Substituting for I_{b} from EQ. 19 and collecting terms we find the reciprocal of the gain is EQ. 21

$$
\frac{V_{I}}{V_{O}}=\left(2 r_{\pi}+(\beta+1) R_{B}\right) \cdot \frac{1+\frac{R_{T}+R_{B}}{R_{C}}}{\beta R_{T}+(\beta+1) R_{B}}-\frac{R_{B}}{R_{C}}
$$

Using the given collector current, $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$, we find $\mathrm{r}_{\pi}=\beta \mathrm{V}_{\mathrm{TH}} / \mathrm{I}_{\mathrm{C}}=200 \times 25.864 \mathrm{mV} / 10 \mathrm{~mA}=$ 517Ω. Therefore, the reciprocal gain is
EQ. 22
$\frac{V_{1}}{V_{O}}=\left(2 r_{\pi}+(\beta+1) R_{B}\right) \cdot \frac{1+\frac{R_{T}+R_{B}}{R_{C}}}{\beta R_{T}+(\beta+1) R_{B}}-\frac{R_{B}}{R_{C}}=\frac{2 r_{\pi}\left(1+\frac{R_{T}+R_{B}}{R_{C}}\right)+R_{B}\left(\beta+1+\frac{R_{T}}{R_{C}}\right)}{\beta R_{T}+(\beta+1) R_{B}}=\frac{1}{2.84 \mathrm{~V} / \mathrm{V}}$.
Two-port Approach

Figure 15 shows the two-port treatment of the feedback network, another way to find the gain.
KVL from the output to ground provides:
EQ. 23

$$
V_{O}=\left[\left(\beta+\frac{R_{B}}{R_{B}+R_{T}}\right) I_{b}-\frac{V_{O}}{R_{C}}\right]\left(R_{T}+R_{B}\right) .
$$

EQ. 23 results in the same expression for I_{b} as EQ. 19. KVL from the input to ground provides EQ. 24

$$
V_{I}=I_{b}\left(2 r_{\pi}+R_{T} / / R_{B}\right)+\frac{R_{B}}{R_{B}+R_{T}} V_{O}=\left(\frac{1+\frac{R_{T}+R_{B}}{R_{C}}}{\beta R_{T}+(\beta+1) R_{B}}\right) \cdot\left(2 r_{\pi}+R_{T} / / R_{B}\right) V_{O}+\frac{R_{B}}{R_{B}+R_{T}} V_{O}
$$

where EQ. 19 was used for I_{b}. The reciprocal of the gain is then

EQ. 25

$$
\frac{V_{\mathrm{I}}}{\mathrm{~V}_{\mathrm{O}}}=\left(\frac{1+\frac{\mathrm{R}_{\mathrm{T}}+\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{C}}}}{\beta \mathrm{R}_{\mathrm{T}}+(\beta+1) \mathrm{R}_{\mathrm{B}}}\right) \cdot\left(2 r_{\pi}+\mathrm{R}_{\mathrm{T}} / / \mathrm{R}_{\mathrm{B}}\right)+\frac{R_{\mathrm{B}}}{\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{T}}}
$$

which is equivalent to EQ. 22.

Digression

That answers the question. Below is some discussion intended to make connection with work in class on the effects of feedback and the effects of loading factors.

Using some algebra, the gain also can be rewritten in terms of a loaded gain and a product of loading factors, as below. The gain with no loading factors is

EQ. 26

$$
A_{v}=\frac{\left(\beta+\frac{R_{B}}{R_{B}+R_{C}}\right) R_{C}}{2 r_{\pi}} \approx \frac{I_{C} R_{C}}{2 V_{T H}}\left(1+\frac{R_{B}}{\beta\left(R_{B}+R_{C}\right)}\right)
$$

This gain is very nearly the same as the diff amp gain without the feedback network. The loaded gain is
EQ. 27

$$
A_{v}(\text { loaded })=A_{v}\left(\frac{R_{C} / /\left(R_{T}+R_{B}\right)}{R_{C}}\right) \cdot\left(\frac{2 r_{\pi}}{2 r_{\pi}+R_{T}+R_{B}}\right)
$$

The loaded gain shows the importance of the loading factors in producing a maximum in the gain for some choice of R_{T}. A maximum occurs because the first loading factor increases from zero to one with increasing R_{T} (remember $R_{T} \rightarrow 0$ means $R_{B} \rightarrow 0$ too, because their ratio is fixed), and the second factor decreases from one to zero as R_{T} increases, as we have seen before in class and in the lab spreadsheet. Finally, the gain with feedback can be written as
EQ. 28

$$
\frac{V_{O}}{V_{I}}=\frac{A_{v}(\text { loaded })}{1+\frac{R_{B}}{R_{T}+R_{B}} A_{v}(\text { loaded })},
$$

where the ratio $R_{B} /\left(R_{T}+R_{B}\right)$ is the voltage feedback factor $\beta_{F B}$. $E Q .28$ shows that, for large loaded gain, the gain with feedback of the noninverting amplifier becomes the ideal value of the circuit with an ideal op amp, that is,
EQ. 29

$$
\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{l}}}=\frac{1}{\frac{1}{A_{v} \text { (loaded) }}+\frac{R_{B}}{R_{T}+R_{B}}}=\left(1+\frac{R_{T}}{R_{B}}\right) \cdot\left(\frac{1}{1+\frac{1+\frac{R_{T}}{R_{B}}}{A_{v}(\text { loaded })}}\right) \approx 1+\frac{R_{T}}{R_{B}},
$$

with the deviation from ideal gain determined by the ratio of the ideal gain to the loaded gain.

