FEATURES
- **Low Offset Voltage**: 50µV max
- **Low Drift**: 0.5µV/°C max
- **Low Input Bias Current**: 5nA max
- **High CMR**: 120dB min
- **Inputs Protected To**: ±40V
- **Wide Supply Range**: ±2.25 to ±18V
- **Low Quiescent Current**: 700µA
- **8-Pin Plastic DIP, SO-8**

APPLICATIONS
- **Bridge Amplifier**
- **Thermocouple Amplifier**
- **RTD Sensor Amplifier**
- **Medical Instrumentation**
- **Data Acquisition**

DESCRIPTION

The INA128 and INA129 are low power, general purpose instrumentation amplifiers offering excellent accuracy. Their versatile 3-op amp design and small size make them ideal for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain (200kHz at G = 100).

A single external resistor sets any gain from 1 to 10,000. INA128 provides an industry standard gain equation; INA129’s gain equation is compatible with the AD620.

The INA128/INA129 is laser trimmed for very low offset voltage (50µV), drift (0.5µV/°C) and high common-mode rejection (120dB at G ≥ 100). It operates with power supplies as low as ±2.25V, and quiescent current is only 700µA—ideal for battery operated systems. Internal input protection can withstand up to ±40V without damage.

The INA128/INA129 is available in 8-pin plastic DIP, and SO-8 surface-mount packages, specified for the –40°C to +85°C temperature range. The INA128 is also available in dual configuration, the INA2128.
SPECIFICATIONS

At $T_A = +25^\circ C$, $V_S = \pm 15V$, $R_L = 10k\Omega$, unless otherwise noted.

INPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Voltage, RTI</td>
<td>$T_A = +25^\circ C$</td>
<td>$\pm 10 \pm 500 \mu V$</td>
<td>$\pm 50 \pm 500 \mu V$</td>
<td>$\pm 125 \pm 1000 \mu V$</td>
<td>μV</td>
</tr>
<tr>
<td>vs Temperature</td>
<td>$T_A = T_{MIN}$ to T_{MAX}</td>
<td>$\pm 0.2 \pm 0.5 \mu V$</td>
<td>$\pm 0.5 \pm 20 \mu V$</td>
<td>$\pm 1 \pm 20 \mu V$</td>
<td>$\mu V/\circ C$</td>
</tr>
<tr>
<td>vs Power Supply</td>
<td>$V_S = \pm 2.25$ to ± 18</td>
<td>$\pm 0.1 \pm 3 \mu V$</td>
<td>$\pm 1 \pm 10 \mu V$</td>
<td>$\pm 2 \pm 20 \mu V$</td>
<td>$\mu V/\circ C$</td>
</tr>
<tr>
<td>Long-Term Stability</td>
<td>Common-Mode</td>
<td>$\times 10^{11}$</td>
<td>$\times 9$</td>
<td>$\times 20$</td>
<td>$\times 100$</td>
</tr>
<tr>
<td>Impedance, Differential</td>
<td>Common-Mode</td>
<td>$\times 10^{11}$</td>
<td>$\times 9$</td>
<td>$\times 20$</td>
<td>$\times 100$</td>
</tr>
<tr>
<td>Common-Mode</td>
<td>Common-Mode Voltage Range<sup>1</sup></td>
<td>$V_O = 0V$</td>
<td>$(V+) - 2$</td>
<td>$(V+) - 1.4$</td>
<td>$\times \times \times \times$</td>
</tr>
<tr>
<td>Safe Input Voltage</td>
<td>Common-Mode Rejection</td>
<td>$V_{CM} = \pm 13V, \Delta R_S = 1k\Omega$</td>
<td>± 10</td>
<td>± 5</td>
<td>± 10</td>
</tr>
</tbody>
</table>

BIAS CURRENT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs Temperature</td>
<td>± 30</td>
<td>$\times \times \times \times \times \times \times$</td>
<td>$\times \times \times \times \times \times \times$</td>
<td>$\times \times \times \times \times \times \times$</td>
<td>μA</td>
</tr>
<tr>
<td>Offset Current</td>
<td>± 1</td>
<td>$\times \times \times \times \times \times \times$</td>
<td>$\times \times \times \times \times \times \times$</td>
<td>$\times \times \times \times \times \times \times$</td>
<td>μA</td>
</tr>
</tbody>
</table>

NOISE VOLTAGE, RTI

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I = 10Hz$</td>
<td>$G = 10$, $R_L = 100\Omega$</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>μV</td>
</tr>
<tr>
<td>$I = 1kHz$</td>
<td>$G = 10$, $R_L = 100\Omega$</td>
<td>0.9</td>
<td>30</td>
<td>30</td>
<td>μV</td>
</tr>
</tbody>
</table>

GAIN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain Equation, INA128</td>
<td>$G = 1$, $R_L = 100\Omega$</td>
<td>$1 \times (50k\Omega/\Delta R_S)$</td>
<td>$1 \times (49.4k\Omega/\Delta R_S)$</td>
<td>$1 \times (49.9k\Omega/\Delta R_S)$</td>
<td>V/V</td>
</tr>
<tr>
<td>GAIN Error</td>
<td>$G = 1$</td>
<td>± 0.01</td>
<td>± 0.02</td>
<td>± 0.05</td>
<td>± 0.5</td>
</tr>
<tr>
<td>$G = 10$</td>
<td>± 0.02</td>
<td>± 0.4</td>
<td>± 0.5</td>
<td>$%$</td>
<td></td>
</tr>
<tr>
<td>$G = 100$</td>
<td>± 0.05</td>
<td>± 0.5</td>
<td>± 0.7</td>
<td>$%$</td>
<td></td>
</tr>
<tr>
<td>$G = 1000$</td>
<td>± 0.5</td>
<td>± 1</td>
<td>± 2</td>
<td>$%$</td>
<td></td>
</tr>
</tbody>
</table>

FREQUENCY RESPONSE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth, –3dB</td>
<td>$G = 1$</td>
<td>1.3</td>
<td>200</td>
<td>2000</td>
<td>kHz</td>
</tr>
<tr>
<td>$G = 10$</td>
<td>700</td>
<td>700</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G = 100$</td>
<td>4000</td>
<td>4000</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G = 1000$</td>
<td>40000</td>
<td>40000</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>$G = 1$</td>
<td>7</td>
<td>7</td>
<td>$\mu A/\mu S$</td>
<td></td>
</tr>
<tr>
<td>$G = 10$</td>
<td>9</td>
<td>9</td>
<td>$\mu A/\mu S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$G = 1000$</td>
<td>80</td>
<td>80</td>
<td>$\mu A/\mu S$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POWER SUPPLY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Range</td>
<td></td>
<td>± 2.25</td>
<td>± 15</td>
<td>± 18</td>
<td>V</td>
</tr>
<tr>
<td>Current, Total</td>
<td>$V_{IN} = 0V$</td>
<td>± 700</td>
<td>± 750</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

TEMPERATURE RANGE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td></td>
<td>-40</td>
<td>85</td>
<td>\times</td>
<td>$^\circ C$</td>
</tr>
<tr>
<td>Operating</td>
<td>θ_{JA}</td>
<td>-40</td>
<td>125</td>
<td>\times</td>
<td>$^\circ C/\circ W$</td>
</tr>
</tbody>
</table>

¹ Specification same as INA128P, U or INA129P, U.

NOTE: (1) Input common-mode range varies with output voltage—see typical curves. (2) Guaranteed by wafer test. (3) Temperature coefficient of the $50k\Omega$ (or $49.4k\Omega$) term in the gain equation. (4) Nonlinearity measurements in $G = 1000$ are dominated by noise. Typical nonlinearity is $\pm 0.001\%$.

* Specification same as INA128P, U or INA129P, U.
ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>±18V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Input Voltage Range</td>
<td>±40V</td>
</tr>
<tr>
<td>Output Short-Circuit (to ground)</td>
<td>Continuous</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>–40°C to +125°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>–40°C to +125°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>+150°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>+300°C</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE</th>
<th>PACKAGE DRAWING NUMBER(1)</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INA128PA</td>
<td>8-Pin Plastic DIP</td>
<td>006</td>
<td>–40°C to +85°C</td>
</tr>
<tr>
<td>INA128P</td>
<td>8-Pin Plastic DIP</td>
<td>006</td>
<td>–40°C to +85°C</td>
</tr>
<tr>
<td>INA128UA</td>
<td>SO-8 Surface-Mount</td>
<td>182</td>
<td>–40°C to +85°C</td>
</tr>
<tr>
<td>INA128U</td>
<td>SO-8 Surface-Mount</td>
<td>182</td>
<td>–40°C to +85°C</td>
</tr>
<tr>
<td>INA129PA</td>
<td>8-Pin Plastic DIP</td>
<td>006</td>
<td>–40°C to +85°C</td>
</tr>
<tr>
<td>INA129P</td>
<td>8-Pin Plastic DIP</td>
<td>006</td>
<td>–40°C to +85°C</td>
</tr>
<tr>
<td>INA129UA</td>
<td>SO-8 Surface-Mount</td>
<td>182</td>
<td>–40°C to +85°C</td>
</tr>
<tr>
<td>INA129U</td>
<td>SO-8 Surface-Mount</td>
<td>182</td>
<td>–40°C to +85°C</td>
</tr>
</tbody>
</table>

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.
TYPICAL PERFORMANCE CURVES

At $T_A = +25^\circ C$, $V_S = \pm 15V$, unless otherwise noted.

GAIN vs FREQUENCY

$G = 1$ V/V
$G = 10$ V/V
$G = 100$ V/V
$G = 1000$ V/V

COMMON-MODE REJECTION vs FREQUENCY

$G = 1$ V/V
$G = 10$ V/V
$G = 100$ V/V
$G = 1000$ V/V

POSITIVE POWER SUPPLY REJECTION vs FREQUENCY

$G = 1$ V/V
$G = 10$ V/V
$G = 100$ V/V
$G = 1000$ V/V

NEGATIVE POWER SUPPLY REJECTION vs FREQUENCY

$G = 1$ V/V
$G = 10$ V/V
$G = 100$ V/V
$G = 1000$ V/V

INPUT COMMON-MODE RANGE vs OUTPUT VOLTAGE, $V_S = \pm 15V$

V_{O}
$V_{D/2}$
$V_{D/2}$

INPUT COMMON-MODE RANGE vs OUTPUT VOLTAGE, $V_S = \pm 5$, $\pm 2.5V$

V_{O}
$V_{D/2}$
$V_{D/2}$

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^\circ C$, $V_{IN} = \pm 15V$, unless otherwise noted.

INPUT-REFERRED NOISE vs FREQUENCY

SETTLING TIME vs GAIN

QUIESCENT CURRENT and SLEW RATE vs TEMPERATURE

INPUT OVER-VOLTAGE V/I CHARACTERISTICS

INPUT OFFSET VOLTAGE WARM-UP

INPUT BIAS CURRENT vs TEMPERATURE
TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^\circ C$, $V_R = \pm 15V$, unless otherwise noted.

OUTPUT VOLTAGE SWING vs OUTPUT CURRENT

OUTPUT VOLTAGE SWING vs POWER SUPPLY VOLTAGE

SHORT-CIRCUIT OUTPUT CURRENT vs TEMPERATURE

MAXIMUM OUTPUT VOLTAGE vs FREQUENCY

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY
TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^\circ C$, $V_S = \pm 15V$, unless otherwise noted.

SMALL-SIGNAL

$G = 1$, 10

- $G = 1$
- $G = 10$

5µs/div

LARGE-SIGNAL

$G = 1$, 10

- $G = 1$
- $G = 10$

5µs/div

VOLTAGE NOISE 0.1 to 10Hz

INPUT-REFERRED, $G \geq 100$

0.1µV/div

1s/div

SMALL-SIGNAL

$G = 100$, 1000

- $G = 100$
- $G = 1000$

20µs/div
APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA128/INA129. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 8Ω in series with the Ref pin will cause a typical device to degrade to approximately 80dB CMR (G = 1).

SETTING THE GAIN

Gain is set by connecting a single external resistor, R_G, connected between pins 1 and 8:

\[
\text{INA128: } G = 1 + \frac{50k\Omega}{R_G} \quad (1)
\]

\[
\text{INA129: } G = 1 + \frac{49.4k\Omega}{R_G} \quad (2)
\]

Commonly used gains and resistor values are shown in Figure 1.

The 50kΩ term in Equation 1 (49.4kΩ in Equation 2) comes from the sum of the two internal feedback resistors of A1 and A2. These on-chip metal film resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these internal resistors are included in the gain accuracy and drift specifications of the INA128/INA129.

The stability and temperature drift of the external gain setting resistor, R_G, also affects gain. R_G’s contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

DYNAMIC PERFORMANCE

The typical performance curve “Gain vs Frequency” shows that, despite its low quiescent current, the INA128/INA129 achieves wide bandwidth, even at high gain. This is due to the current-feedback topology of the input stage circuitry. Settling time also remains excellent at high gain.

NOISE PERFORMANCE

The INA128/INA129 provides very low noise in most applications. Low frequency noise is approximately 0.2µVp-p measured from 0.1 to 10Hz (G ≥ 100). This provides dramatically improved noise when compared to state-of-the-art chopper-stabilized amplifiers.

![Figure 1. Basic Connections.](image-url)
OFFSET TRIMMING

The INA128/INA129 is laser trimmed for low offset voltage and offset voltage drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed with the output. The op amp buffer provides low impedance at the Ref terminal to preserve good common-mode rejection.

![FIGURE 2. Optional Trimming of Output Offset Voltage.](image)

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA128/INA129 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is approximately $\pm 2nA$. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the common-mode range, and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

![FIGURE 3. Providing an Input Common-Mode Current Path.](image)

INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA128/INA129 is from approximately 1.4V below the positive supply to 1.7V above the negative supply. As a differential input voltage causes the output voltage increase, however, the linear input range will be limited by the output voltage swing of amplifiers A₁ and A₂. So the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage—see performance curves “Input Common-Mode Range vs Output Voltage”.

Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of A₃ will be near 0V even though both inputs are overloaded.

LOW VOLTAGE OPERATION

The INA128/INA129 can be operated on power supplies as low as $\pm 2.25V$. Performance remains excellent with power supplies ranging from $\pm 2.25V$ to $\pm 18V$. Most parameters vary only slightly throughout this supply voltage range—see typical performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power supply voltage. Typical performance curves, “Input Common-Mode Range vs Output Voltage” show the range of linear operation for $\pm 15V$, $\pm 5V$, and $\pm 2.5V$ supplies.
NOTE: Due to the INA128’s current-feedback topology, V_G is approximately 0.7V less than the common-mode input voltage. This DC offset in this guard potential is satisfactory for many guarding applications.
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated